• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 102
  • 14
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 361
  • 91
  • 88
  • 73
  • 66
  • 63
  • 45
  • 44
  • 33
  • 32
  • 27
  • 27
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Lipids and follicular function.

Hamilton, Richard Phillip. January 1979 (has links) (PDF)
Thesis (Ph.D. 1980) from the Department of Obstetrics and Gynaecology, University of Adelaide.
32

Purification and properties of follicle-stimulating hormone and luteinizing hormone from sheep anterior pituitary glands

Sherwood, Orrin David, January 1969 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1969. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
33

Factors affecting the quality and function of the bovine periovulatory follicle

Harl, Audra Whitney 15 November 2018 (has links)
For many cattle operations, profitability depends on the success of reproductive management programs. Opportunities for improving fertility exist within the numerous challenges related to reproductive management. Non-conventional, creative tools for reproductive management could help producers overcome these challenges. In an effort to produce information that could be used to improve reproductive performance of cattle, the following studies were undertaken. The objectives of these studies were threefold: to determine whether GnRH administered as an epidural injection causes ovulation in healthy cows and heifers, to evaluate whether the follicular environment (specifically, follicle fluid) surrounding the oocyte during the maturation phase affects the ability of the cumulus-oocyte complex to progress through early embryonic development, and to investigate the relative effects of estradiol and progesterone on oocyte maturation and early embryo development. Ability of GnRH to elicit an ovulatory response when administered as an epidural was evaluated in crossbred angus cows and heifers. The preliminary study evaluated this route of administration in crossbred angus cows. Animals were assigned randomly to either intramuscular or epidural administration, and ovaries were visualized via transrectal ultrasound every 6 h until ovulation of the dominant follicle. Results indicated that epidural administration of GnRH was able to trigger an ovulatory response, but timing of ovulation was not measured. The main experiment evaluated incidence of ovulation, time to ovulation, and ovulatory follicle size in crossbred angus heifers administered GnRH either epidurally or intramuscularly. Heifers were randomly assigned to treatment and ovaries were visualized every 4 h via transrectal ultrasound until ovulation of the dominant follicle. Results indicated that epidural administration of GnRH was able to elicit an ovulatory response in heifers, and the timing of ovulation and ovulatory follicle size was not different between administration route. Further investigation is needed to determine if characteristics of the ovulatory response (such as the luteinizing hormone surge) and circulating concentrations of GnRH are altered by epidural administration, which may impact fertility. GnRH administration is standard practice in many estrous synchronization programs. For fixed-time artificial insemination programs, the detection of estrus prior to insemination has been shown to improve conception and decrease early embryonic loss. The impact of behavioral estrus expression on the oocyte and early embryo were evaluated. Oocytes were matured in vitro in follicle fluid collected from synchronized cows who were classified as having expressed behavioral estrus or not expressing estrus. Embryo cleavage was not affected by estrus expression, but there was a tendency for improved blastocyst development in embryos matured in follicle fluid from animals who had expressed estrus. Cell number was not affected by estrus expression, but future research is needed as to the effect on oocyte acquisition of competence and early embryonic development. Despite the progress that has been made in culture conditions for in vitro produced embryos, developmental capacity following fertilization is limited at best, with only around one-third of oocytes placed into maturation resulting in viable embryos. During in vivo maturation, the oocyte undergoes final maturation within the follicle, surrounded by a changing microenvironment of estradiol and progesterone. Although the effects of steroids on oocyte development in vitro have been studied on an individual basis, a direct comparison between the ratio of estrogen and progesterone relative to follicle size has not been investigated Effects of steroid hormones estradiol and progesterone on oocyte maturation and early embryonic development were evaluated. Oocytes were matured in vitro in media supplemented with either estradiol, progesterone, or a combination of estradiol and progesterone. Oocytes were fertilized after maturation and cultured for 7 d until development to blastocyst stage. Addition of estradiol alone did not support oocyte maturation or early embryonic development in vitro, and a combination of estradiol and progesterone exhibited an inhibitory effect on oocyte maturation and early embryonic development. Addition of progesterone alone resulted in improved development when compared with estradiol alone or a combination of estradiol and progesterone. These results indicate that efficiency of reproductive management programs is controlled by multi-faceted factors and opportunities for improvement of reproductive outcomes exist in all of these factors. Although ovulation can be elicited via epidural administration, the impact of this ovulatory trigger on fertility requires further investigation. Display of estrus after synchronization for fixed-time artificial insemination improves conception and decreases early embryonic loss and has a may improve blastocyst development. This effect on early embryo development could be the focus of future research, further improving fertility and possibly the efficacy of in vitro embryo production. Steroid hormones play crucial roles in oocyte competency and the addition of progesterone during in vitro maturation improves development compared with estradiol alone or a combination of estradiol and progesterone. / Ph. D. / Reproductive success is critical for economic sustainability for many cattle operations. Creative tools for fertility management could help cattle producers overcome many challenges to fertility. In an effort to produce information that could be used to improve reproductive performance of cattle, the following studies were undertaken. The objective of these studies was to determine whether hormone administration as an epidural injection causes ovulation in healthy cattle (young and mature cattle assessed). Additionally, the second study evaluated whether the follicle (fluid-filled compartment surrounding the egg on the ovary) environment affects the female egg prior to ovulation, and the early embryo after fertilization. Finally, the third study looked at the impact of follicle fluid and specific hormones on embryo growth. An experiment was conducted in cows and heifers to determine if administering a hormone as an epidural injection, as opposed to conventional methods, could cause ovulation of the follicle. Animals received either an intramuscular or epidural hormone injection, and the ovaries of the animals were observed on an ultrasound until the follicle ruptured, releasing the egg. Epidural administration of the hormone was indeed able to trigger the rupture of the follicle. Hormone administration is standard practice in many cattle fertility programs. To maximize fertility, animals need to come into “heat” or estrus (period of sexual receptivity). Coming into heat is important for fertility in the female as it is indicative of impending ovulation and preparation of the egg for fertilization. In some reproductive management systems, reproductive cycles can be controlled in ways that deemphasize the need for behavioral estrus. Recent reports have suggested that animals in these systems that exhibit behavioral estrus are more fertile, as it makes it more likely for the female to conceive and stay pregnant compared to females who do not come into heat. The impact of heat on the female egg and early embryo of the cow has not been investigated. To evaluate the impact of heat on embryos, eggs were taken from the ovary of the cow and matured in a cell culture lab overnight in media containing fluid taken from the follicles of animals who came into heat, and animals that did not come into heat. The eggs were then fertilized, and embryos developed. There was only a tendency for improvement in embryo development for those matured in fluid from animals in heat compared with animals not in heat. When growing embryos in a culture lab, success rates are lower than embryos developing in the animal. When the egg is being prepared for release, it goes through important maturation steps to enable fertilization and eventual growth into a calf. Hormones in the follicle fluid facilitate maturation, and the conditions in the follicle are not easily replicated in the lab. The addition of these critical hormones to the lab conditions may help facilitate improved development in lab-produced embryos. Two hormones (estrogen and progesterone) were added to follicle fluid that was used in the lab culture environment to determine their effect on embryo growth. When progesterone was added, embryos grew well, matching the development rate of the control medium. When estrogen was added, embryos experienced poor development. Neither resulted in embryo development that exceeded the control medium. These results indicate that control of reproduction in cattle is complex, and multiple opportunities exist to improve fertility. Future research on how the oocyte and embryo react to their environment is needed and will facilitate further improvement of reproductive management systems in cattle. Improved reproductive management will enhance efficiency, sustainability and profitability of cattle production systems.
34

The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling

Tobin, Desmond J., Foitzik, K., Reinheckel, T.T., Hecklenberg, L., Botchkarev, Vladimir A., Peters, S.C., Paus, R. January 2002 (has links)
No / We have previously shown that the ubiquitously expressed lysosomal cysteine protease, cathepsin L (CTSL), is essential for skin and hair follicle homeostasis. Here we examine the effect of CTSL deficiency on hair follicle development and cycling in ctsl-/- mice by light and electron microscopy, Ki67/terminal dUTP nick-end labeling, and trichohyalin immunofluorescence. Hair follicle morphogenesis in ctsl-/- mice was associated with several abnormalities. Defective terminal differentiation of keratinocytes occurred during the formation of the hair canal, resulting in disruption of hair shaft outgrowth. Both proliferation and apoptosis levels in keratinocytes and melanocytes were higher in ctsl-/- than in ctsl+/+ hair follicles. The development of the hair follicle pigmentary unit was disrupted by vacuolation of differentiating melanocytes. Hair cycling was also abnormal in ctsl-/- mice. Final stages of hair follicle morphogenesis and the induction of hair follicle cycling were retarded. Thereafter, these follicles exhibited a truncated resting phase (telogen) and a premature entry into the first growth phase. Further abnormalities of telogen development included the defective anchoring of club hairs in the skin, which resulted in their abnormal shedding. Melanocyte vacuolation was again apparent during the hair cycle-associated reconstruction of the hair pigmentary unit. A hallmark of these ctsl-/- mice was the severe disruption in the exiting of hair shafts to the skin surface. This was mostly because of a failure of the inner root sheath (keratinocyte layer next to the hair shaft) to fully desquamate. These changes resulted in a massive dilation of the hair canal and the abnormal routing of sebaceous gland products to the skin surface. In summary, this study suggests novel roles for cathepsin proteases in skin, hair, and pigment biology. Principal target tissues that may contain protein substrate(s) for this cysteine protease include the developing hair cone, inner root sheath, anchoring apparatus of the telogen club, and organelles of lysosomal origin (eg, melanosomes).
35

The functional roles of the intra-oocyte phosphatidylinositol 3-kinase (PI3K) signaling in controlling follicular development in mice

Jagarlamudi, Krishna Rao, January 2009 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2009. / Härtill 4 uppsatser.
36

Studies of phosphatidylinositol 3 kinase (PI3K) signaling pathway in mammalian ovarian follicle activation and development /

Rajareddy, Singareddy, January 2007 (has links)
Diss. (sammanfattning) Umeå : Univ., 2007. / Härtill 4 uppsatser.
37

Evidence for a follicle stimulating hormone binding inhibitor (FSH-BI)

Gilsdorf, Mary Ann. January 1984 (has links)
Call number: LD2668 .T4 1984 G58 / Master of Science
38

The effects of human oviductal cells and follicular fluid on sperm functions

姚元慶, Yao, Yuanqing. January 1998 (has links)
published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
39

Lifestyle interventions in women with PCOS: the role of a pulse-based diet

2013 December 1900 (has links)
Context: Polycystic ovary syndrome (PCOS) is complex disorder associated with many metabolic abnormalities. PCOS is one of the most common endocrine disorders occurring in women of reproductive age and affects about 6-7% of the population. Women with PCOS have insulin resistance and hyperinsulinemia, thus increasing their risk of developing Type 2 diabetes mellitus, dyslipidemia, hypertension, cardiovascular disease, and endometrial cancer Overall Objective: To compare anthropometric features (weight, BMI, WC, body fat percent), antral follicle count (AFC), fasting glucose and insulin levels, HOMA score, menstrual bleeding patterns, and abdominal adiposity before and after a dietary intervention. Materials and Methods: The work presented herein represents a subset of the data being analyzed in an ongoing study titled "Lifestyle Intervention for Women with Polycystic Ovary Syndrome: The Role of a Pulse-Based Diet and Aerobic Exercise on Infertility Measures and Metabolic Syndrome Risk". PCOS was diagnosed by two of the three diagnostic criteria as defined by the Rotterdam consensus: a history of cycles >35 days in length, hyperandrogenism as defined by a Ferriman and Gallwey score of >6 or hyperandrogenemia, as well as polycystic ovaries (PCO), defined by >25 follicles visualized upon transvaginal ultrasonography (TVU). Participants were randomized to either a 16 week pulse-based diet or to a TLC diet for 16 weeks. All participants were asked to follow an exercise program for the 16 week duration of the intervention. Changes in demographic, anthropometric features AFC, fasting insulin levels, and intervals between menstrual cycles were assessed. Results: Twenty four women completed the 16 week dietary intervention to date (pulse n=13, TLC n=11). Participants were found to be similarly matched for age, weight, BMI, WC, and FAI. Weight (p=0.002) and body fat (p=0.0004) decreased significantly. No significant differences were detected in BMI and waist circumference. Antral follicle counts were decreased in the right ovary (p=0.04) but not the left ovary (p=0.11). There was no change in fasting glucose levels detected. There was a decrease in fasting insulin levels (p=0.02) and in HOMA score (p=0.02). No change in abdominal adiposity was detected (p=0.88). There was a tendency toward a change of fasting insulin levels and HOMA score due to the pulse-based diet. The average interval between menses decreased after the intervention (p=0.04). The longest length of time between menses also decreased after the intervention (p=0.01). Conclusions: Our hypothesis was partially supported. We observed significant decreases in weight, body fat percent, AFC in the right ovary, fasting insulin levels and intermenstrual intervals. In most women, the decreased intermenstrual interval translated into the resumption of menstrual cyclicity. However, the participants' BMI, WC, AFC in the left ovary, and abdominal adiposity were not affected. Consuming food of a lower glycemic index without a calorie restriction may help women with PCOS gain healthier anthropometric profiles, decrease serum insulin levels and insulin resistance, and increase the regularity of menstrual cycles. Further study involving weight reduction and dietary intervention with pulses may prove to be more successful than calorie reduction alone.
40

The role of vascular endothelial growth factor isoforms in early follicle development

McFee, Renee Marie January 1900 (has links)
Master of Science / Department of Animal Sciences and Industry / Timothy G. Rozell / Since vascularization of the theca layer increases as follicles progress in size through preantral and antral stages, the principal angiogenic factor, vascular endothelial growth factor A (VEGFA), may influence follicle growth via regulation of angiogenesis. However, VEGFA may also influence follicular development through nonangiogenic mechanisms since its expression has been localized to nonvascular follicles and cells. Alternative mRNA splicing of 8 exons from the VEGFA gene results in the formation of different VEGFA isoforms. Each isoform has unique properties and is identified by the number of amino acids within the mature protein. Proangiogenic isoforms are encoded by exon 8a while a sister set of isoforms with antiangiogenic properties are encoded by exon 8b. The antiangiogenic isoforms comprise the majority of VEGFA expressed in most tissues while expression of the proangiogenic VEGFA isoforms is upregulated in tissues undergoing active angiogenesis. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at embryonic day 16. The antiangiogenic isoforms, Vegfa_165b and Vegfa_189b, were amplified and sequenced from rat ovaries and quantitative RT-PCR determined that Vegfa_165b mRNA was more abundant around embryonic day 18, but Vegfa_189b lacked a distinct pattern of abundance. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. Antiangiogenic VEGFA isoforms were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, postnatal day 3/4 rat ovaries were cultured with VEGFR-TKI, a tyrosine kinase inhibitor that blocks signaling through the VEGFA receptors, FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94%. In addition, treated ovaries had more primordial follicles, fewer early primary, transitional, and secondary follicles, and greater total follicle numbers compared with control ovaries. This suggests that VEGFA promotes follicle recruitment and early follicular development. These effects may be dependent upon increased ovarian vascularization or they may be mediated by nonvascular mechanisms.

Page generated in 0.0342 seconds