Spelling suggestions: "subject:"follicle egmentation"" "subject:"follicle asegmentation""
1 |
Computer assisted detection of polycystic ovary morphology in ultrasound imagesRaghavan, Mary Ruth Pradeepa 29 August 2008
Polycystic ovary syndrome (PCOS) is an endocrine abnormality with multiple diagnostic criteria due to its heterogenic manifestations. One of the diagnostic criterion includes analysis of ultrasound images of ovaries for the detection of number, size, and distribution of follicles within the ovary. This involves manual tracing of follicles on the ultrasound images to determine the presence of a polycystic ovary (PCO). A novel method that automates PCO morphology detection is described. Our algorithm involves automatic segmentation of follicles from ultrasound images, quantifying the attributes of the segmented
follicles using stereology, storing follicle attributes as feature vectors, and finally
classification of the feature vector into two categories. The classification categories are
PCO morphology present and PCO morphology absent. An automatic PCO diagnostic tool would save considerable time spent on manual tracing of follicles and measuring the length and width of every follicle. Our procedure was able to achieve classification accuracy of 92.86% using a linear discriminant classifier. Our classifier will improve the rapidity and accuracy of PCOS diagnosis, and reduce the chance of the severe health implications that can arise from delayed diagnosis.
|
2 |
Computer assisted detection of polycystic ovary morphology in ultrasound imagesRaghavan, Mary Ruth Pradeepa 29 August 2008 (has links)
Polycystic ovary syndrome (PCOS) is an endocrine abnormality with multiple diagnostic criteria due to its heterogenic manifestations. One of the diagnostic criterion includes analysis of ultrasound images of ovaries for the detection of number, size, and distribution of follicles within the ovary. This involves manual tracing of follicles on the ultrasound images to determine the presence of a polycystic ovary (PCO). A novel method that automates PCO morphology detection is described. Our algorithm involves automatic segmentation of follicles from ultrasound images, quantifying the attributes of the segmented
follicles using stereology, storing follicle attributes as feature vectors, and finally
classification of the feature vector into two categories. The classification categories are
PCO morphology present and PCO morphology absent. An automatic PCO diagnostic tool would save considerable time spent on manual tracing of follicles and measuring the length and width of every follicle. Our procedure was able to achieve classification accuracy of 92.86% using a linear discriminant classifier. Our classifier will improve the rapidity and accuracy of PCOS diagnosis, and reduce the chance of the severe health implications that can arise from delayed diagnosis.
|
3 |
Laplacian Pyramid FCN for Robust Follicle SegmentationWang, Zhewei 23 September 2019 (has links)
No description available.
|
4 |
Segmentation of human ovarian follicles from ultrasound images acquired <i>in vivo</i> using geometric active contour models and a naïve Bayes classifierHarrington, Na 14 September 2007
Ovarian follicles are spherical structures inside the ovaries which contain developing eggs. Monitoring the development of follicles is necessary for both gynecological medicine (ovarian diseases diagnosis and infertility treatment), and veterinary medicine (determining when to introduce superstimulation in cattle, or dividing herds into different stages in the estrous cycle).<p>Ultrasound imaging provides a non-invasive method for monitoring follicles. However, manually detecting follicles from ovarian ultrasound images is time consuming and sensitive to the observer's experience. Existing (semi-) automatic follicle segmentation techniques show the power of automation, but are not widely used due to their limited success.<p>A new automated follicle segmentation method is introduced in this thesis. Human ovarian images acquired <i>in vivo</i> were smoothed using an adaptive neighbourhood median filter. Dark regions were initially segmented using geometric active contour models. Only part of these segmented dark regions were true follicles. A naïve Bayes classifier was applied to determine whether each segmented dark region was a true follicle or not. <p>The Hausdorff distance between contours of the automatically segmented regions and the gold standard was 2.43 ± 1.46 mm per follicle, and the average root mean square distance per follicle was 0.86 ± 0.49 mm. Both the average Hausdorff distance and the root mean square distance were larger than those reported in other follicle segmentation algorithms. The mean absolute distance between contours of the automatically segmented regions and the gold standard was 0.75 ± 0.32 mm, which was below that reported in other follicle segmentation algorithms.<p>The overall follicle recognition rate was 33% to 35%; and the overall image misidentification rate was 23% to 33%. If only follicles with diameter greater than or equal to 3 mm were considered, the follicle recognition rate increased to 60% to 63%, and the follicle misidentification rate increased slightly to 24% to 34%. The proposed follicle segmentation method is proved to be accurate in detecting a large number of follicles with diameter greater than or equal to 3 mm.
|
5 |
Segmentation of human ovarian follicles from ultrasound images acquired <i>in vivo</i> using geometric active contour models and a naïve Bayes classifierHarrington, Na 14 September 2007 (has links)
Ovarian follicles are spherical structures inside the ovaries which contain developing eggs. Monitoring the development of follicles is necessary for both gynecological medicine (ovarian diseases diagnosis and infertility treatment), and veterinary medicine (determining when to introduce superstimulation in cattle, or dividing herds into different stages in the estrous cycle).<p>Ultrasound imaging provides a non-invasive method for monitoring follicles. However, manually detecting follicles from ovarian ultrasound images is time consuming and sensitive to the observer's experience. Existing (semi-) automatic follicle segmentation techniques show the power of automation, but are not widely used due to their limited success.<p>A new automated follicle segmentation method is introduced in this thesis. Human ovarian images acquired <i>in vivo</i> were smoothed using an adaptive neighbourhood median filter. Dark regions were initially segmented using geometric active contour models. Only part of these segmented dark regions were true follicles. A naïve Bayes classifier was applied to determine whether each segmented dark region was a true follicle or not. <p>The Hausdorff distance between contours of the automatically segmented regions and the gold standard was 2.43 ± 1.46 mm per follicle, and the average root mean square distance per follicle was 0.86 ± 0.49 mm. Both the average Hausdorff distance and the root mean square distance were larger than those reported in other follicle segmentation algorithms. The mean absolute distance between contours of the automatically segmented regions and the gold standard was 0.75 ± 0.32 mm, which was below that reported in other follicle segmentation algorithms.<p>The overall follicle recognition rate was 33% to 35%; and the overall image misidentification rate was 23% to 33%. If only follicles with diameter greater than or equal to 3 mm were considered, the follicle recognition rate increased to 60% to 63%, and the follicle misidentification rate increased slightly to 24% to 34%. The proposed follicle segmentation method is proved to be accurate in detecting a large number of follicles with diameter greater than or equal to 3 mm.
|
Page generated in 0.0898 seconds