Spelling suggestions: "subject:"enfonction dde tax dde probabilité"" "subject:"enfonction dde tax dee probabilité""
1 |
Essays on bayesian analysis of state space models with financial applicationsGingras, Samuel 05 1900 (has links)
Cette thèse est organisée en trois chapitres où sont développées des méthodes de simulation à posteriori pour inférence Bayesienne dans des modèles espace-état ainsi que des modèles économétriques pour l’analyse de données financières.
Au chapitre 1, nous considérons le problème de simulation a posteriori dans les modèles espace-état univariés et non-Gaussiens. Nous proposons une nouvelle méthode de Monte-Carlo par chaînes de Markov (MCMC) mettant à jour le vecteur de paramètres de la dynamique d’état ainsi que la séquence de variables d’état conjointement dans un bloc unique. La proposition MCMC est tirée en deux étapes: la distribution marginale du vecteur de paramètres de la dynamique d’état est construite en utilisant une approximation du gradient et du Hessien du logarithme de sa densité a posteriori, pour laquelle le vecteur de variables d’état a été intégré. La distribution conditionnelle de la séquence de variables d’état, étant donné la proposition du vecteur de paramètres, est telle que décrite dans McCausland (2012). Le calcul du gradient et du Hessien approximatif combine des sous-produits de calcul du tirage d’état avec une quantité modeste de calculs supplémentaires. Nous comparons l’efficacité numérique de notre simulation a posteriori à celle de la méthode Ancillarity-Sufficiency Interweaving Strategy (ASIS) décrite dans Kastner & Frühwirth-Schnatter (2014), en utilisant un modèle de volatilité stochastique Gaussien et le même panel de 23 taux de change quotidiens utilisé dans ce même article. Pour calculer la moyenne a posteriori du paramètre de persistance de la volatilité, notre efficacité numérique est de 6 à 27 fois plus élevée; pour la volatilité du paramètre de volatilité, elle est de 18 à 53 fois plus élevée. Nous analysons dans un second exemple des données de compte de transaction avec un modèle Poisson et Gamma-Poisson dynamique. Malgré la nature non Gaussienne des données de compte, nous obtenons une efficacité numérique élevée, guère inférieure à celle rapportée dans McCausland (2012) pour une méthode d’échantillonnage impliquant un calcul préliminaire de la forme de la distribution a posteriori statique des paramètres.
Au chapitre 2, nous proposons un nouveau modèle de durée conditionnelle stochastique (SCD) pour l’analyse de données de transactions financières en haute fréquence. Nous identifions certaines caractéristiques indésirables des densités de durée conditionnelles paramétriques existantes et proposons une nouvelle famille de densités conditionnelles flexibles pouvant correspondre à une grande variété de distributions avec des fonctions de taux de probabilité modérément variable. Guidés par des considérations théoriques issues de la théorie des files d’attente, nous introduisons des déviations non-paramétriques autour d’une distribution exponentielle centrale, qui, selon nous, est un bon modèle de premier ordre pour les durées financières, en utilisant une densité de Bernstein. La densité résultante est non seulement flexible, dans le sens qu’elle peut s’approcher de n’importe quelle densité continue sur [0, ∞) de manière arbitraire, à condition qu’elle se compose d’un nombre suffisamment grand de termes, mais également susceptible de rétrécissement vers la distribution exponentielle. Grâce aux tirages très efficaces des variables d’état, l’efficacité numérique de notre simulation a posteriori se compare très favorablement à celles obtenues dans les études précédentes. Nous illustrons nos méthodes à l’aide des données de cotation d’actions négociées à la Bourse de Toronto. Nous constatons que les modèles utilisant notre densité conditionnelle avec moins de qua- tre termes offrent le meilleur ajustement. La variation régulière trouvée dans les fonctions de taux de probabilité, ainsi que la possibilité qu’elle ne soit pas monotone, aurait été impossible à saisir avec une spécification paramétrique couramment utilisée.
Au chapitre 3, nous présentons un nouveau modèle de durée stochastique pour les temps de transaction dans les marchés d’actifs. Nous soutenons que les règles largement acceptées pour l’agrégation de transactions apparemment liées induisent une inférence erronée concernant les durées entre des transactions non liées: alors que deux transactions exécutées au cours de la même seconde sont probablement liées, il est extrêmement improbable que toutes paires de transactions le soient, dans un échantillon typique. En plaçant une incertitude sur les transactions liées dans notre modèle, nous améliorons l’inférence pour la distribution de la durée entre les transactions non liées, en particulier près de zéro. Nous proposons un modèle en temps discret pour les temps de transaction censurés permettant des valeurs nulles excessives résultant des durées entre les transactions liées. La distribution discrète des durées entre les transactions indépendantes découle d’une densité flexible susceptible de rétrécissement vers une distribution exponentielle. Dans un exemple empirique, nous constatons que la fonction de taux de probabilité conditionnelle sous-jacente pour des durées (non censurées) entre transactions non liées varie beaucoup moins que celles trouvées dans la plupart des études; une distribution discrète pour les transactions non liées basée sur une distribution exponentielle fournit le meilleur ajustement pour les trois séries analysées. Nous prétendons que c’est parce que nous évitons les artefacts statistiques qui résultent de règles déterministes d’agrégation des échanges et d’une distribution paramétrique inadaptée. / This thesis is organized in three chapters which develop posterior simulation methods for Bayesian inference in state space models and econometrics models for the analysis of financial data.
In Chapter 1, we consider the problem of posterior simulation in state space models with non-linear non-Gaussian observables and univariate Gaussian states. We propose a new Markov Chain Monte Carlo (MCMC) method that updates the parameter vector of the state dynamics and the state sequence together as a single block. The MCMC proposal is drawn in two steps: the marginal proposal distribution for the parameter vector is constructed using an approximation of the gradient and Hessian of its log posterior density, with the state vector integrated out. The conditional proposal distribution for the state sequence given the proposal of the parameter vector is the one described in McCausland (2012). Computation of the approximate gradient and Hessian combines computational by-products of the state draw with a modest amount of additional computation. We compare the numerical efficiency of our posterior simulation with that of the Ancillarity-Sufficiency Interweaving Strategy (ASIS) described in Kastner & Frühwirth-Schnatter (2014), using the Gaus- sian stochastic volatility model and the panel of 23 daily exchange rates from that paper. For computing the posterior mean of the volatility persistence parameter, our numerical efficiency is 6-27 times higher; for the volatility of volatility parameter, 18-53 times higher. We analyse trans- action counts in a second example using dynamic Poisson and Gamma-Poisson models. Despite non-Gaussianity of the count data, we obtain high numerical efficiency that is not much lower than that reported in McCausland (2012) for a sampler that involves pre-computing the shape of a static posterior distribution of parameters.
In Chapter 2, we propose a new stochastic conditional duration model (SCD) for the analysis of high-frequency financial transaction data. We identify undesirable features of existing parametric conditional duration densities and propose a new family of flexible conditional densities capable of matching a wide variety of distributions with moderately varying hazard functions. Guided by theoretical consideration from queuing theory, we introduce nonparametric deviations around a central exponential distribution, which we argue is a sound first-order model for financial durations, using a Bernstein density. The resulting density is not only flexible, in the sense that it can approximate any continuous density on [0,∞) arbitrarily closely, provided it consists of a large enough number of terms, but also amenable to shrinkage towards the exponential distribution. Thank to highly efficiency draws of state variables, numerical efficiency of our posterior simulation compares very favourably with those obtained in previous studies. We illustrate our methods using quotation data on equities traded on the Toronto Stock Exchange. We find that models with our proposed conditional density having less than four terms provide the best fit. The smooth variation found in the hazard functions, together with the possibility of it being non-monotonic, would have been impossible to capture using commonly used parametric specification.
In Chapter 3, we introduce a new stochastic duration model for transaction times in asset markets. We argue that widely accepted rules for aggregating seemingly related trades mislead inference pertaining to durations between unrelated trades: while any two trades executed in the same second are probably related, it is extremely unlikely that all such pairs of trades are, in a typical sample. By placing uncertainty about which trades are related within our model, we improve inference for the distribution of duration between unrelated trades, especially near zero. We propose a discrete model for censored transaction times allowing for zero-inflation resulting from clusters of related trades. The discrete distribution of durations between unrelated trades arises from a flexible density amenable to shrinkage towards an exponential distribution. In an empirical example, we find that the underlying conditional hazard function for (uncensored) durations between unrelated trades varies much less than what most studies find; a discrete distribution for unrelated trades based on an exponential distribution provides a better fit for all three series analyzed. We claim that this is because we avoid statistical artifacts that arise from deterministic trade-aggregation rules and unsuitable parametric distribution.
|
Page generated in 0.1678 seconds