Spelling suggestions: "subject:"fonctionnelle d'énergie"" "subject:"jonctionnelle d'énergie""
1 |
Déformations des applications harmoniques torduesSpinaci, Marco 25 November 2013 (has links) (PDF)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour les construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ aux points critiques.
|
2 |
Déformations des applications harmoniques tordues / Deformations of twisted harmonic mapsSpinaci, Marco 25 November 2013 (has links)
On étudie les déformations des applications harmoniques $f$ tordues par rapport à une représentation. Après avoir construit une application harmonique tordue "universelle", on donne une construction de toute déformations du premier ordre de $f$ en termes de la théorie de Hodge ; on applique ce résultat à l'espace de modules des représentations réductives d'un groupe de Kähler, pour démontrer que les points critiques de la fonctionnelle de l'énergie $E$ coïncident avec les représentations de monodromie des variations complexes de structures de Hodge. Ensuite, on procède aux déformations du second ordre, où des obstructions surviennent ; on enquête sur l'existence de ces déformations et on donne une méthode pour le construire. En appliquant ce résultat à la fonctionnelle de l'énergie comme ci-dessus, on démontre (pour n'importe quel groupe de présentation finie) que la fonctionnelle de l'énergie est strictement pluri sous-harmonique sur l'espace des modules des représentations. En assumant de plus que le groupe soit de Kähler, on étudie les valeurs propres de la matrice hessienne de $E$ dans les points critiques. / We study the deformations of twisted harmonic maps $f$ with respect to a representation. After constructing a continuous ``universal'' twisted harmonic map, we give a construction of every first order deformation of $f$ in terms of Hodge theory; we apply this result to the moduli space of reductive representations of a K\"ahler group, to show that the critical points of the energy functional $E$ coincide with the monodromy representations of polarized complex variations of Hodge structure. We then proceed to second order deformations, where obstructions arise; we investigate the existence of such deformations, and give a method for constructing them, as well. Applying this to the energy functional as above, we prove (for every finitely presented group) that the energy functional is strictly pluri sub-harmonic on the moduli space of representations; assuming furthermore that the group is Kähler, we study the eigenvalues of the Hessian of $E$ at critical points.
|
3 |
Équation de diffusion généralisée pour un modèle de croissance et de dispersion d'une population incluant des comportements individuels à la frontière des divers habitats / Generalized diffusion equation for a growth and dispersion model of a population including individual behaviors on the boundary of the different habitatsThorel, Alexandre 24 May 2018 (has links)
Le but de ce travail est l'étude d'un problème de transmission en dynamique de population entre deux habitats juxtaposés. Dans chacun des habitats, on considère une équation aux dérivées partielles, modélisant la dispersion généralisée, formée par une combinaison linéaire du laplacien et du bilaplacien. On commence d'abord par étudier et résoudre la même équation avec diverses conditions aux limites posée dans un seul habitat. Cette étude est effectuée grâce à une formulation opérationnelle du problème: on réécrit cette EDP sous forme d'équation différentielle, posée dans un espace de Banach construit sur les espaces Lp avec 1 < p < +∞, où les coefficients sont des opérateurs linéaires non bornés. Grâce au calcul fonctionnel, à la théorie des semi-groupes analytiques et à la théorie de l'interpolation, on obtient des résultats optimaux d'existence, d'unicité et de régularité maximale de la solution classique si et seulement si les données sont dans certains espaces d'interpolation. / The aim of this work is the study of a transmission problem in population dynamics between two juxtaposed habitats. In each habitat, we consider a partial differential equation, modeling the generalized dispersion, made up of a linear combination of Laplacian and Bilaplacian operators. We begin by studying and solving the same equation with various boundary conditions in a single habitat. This study is carried out using an operational formulation of the problem: we rewrite this PDE as a differential equation, set in a Banach space built on the spaces Lp with 1 < p < +∞, where the coefficients are unbounded linear operators. Thanks to functional calculus, analytic semigroup theory and interpolation theory, we obtain optimal results of existence, uniqueness and maximum regularity of the classical solution if and only if the data are in some interpolation spaces.
|
Page generated in 0.0889 seconds