• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés / Conception of salutary hardware to fight against counterfeiting and theft of integrated circuits

Marchand, Cédric 24 November 2016 (has links)
Le vol et la contrefaçon touchent toutes les sphères industrielles de nos sociétés. En particulier, les produits électroniques représentent la deuxième catégorie de produits la plus concernée par ces problèmes. Parmi les produits électroniques les plus touchés, on retrouve les téléphones mobiles, les tablettes, les ordinateurs mais aussi des éléments bien plus basiques comme des circuits analogiques ou numériques et les circuits intégrés. Ces derniers sont au coeur de la plupart des produits électroniques et un téléphone mobile peut être considéré comme contrefait s’il possède ne serait-ce qu’un seul circuit intégré contrefait. Le marché de la contrefaçon de circuits intégrés représente entre 7 et 10% du marché total des semi-conducteurs, ce qui implique une perte d’au moins 24 milliards d’euros en 2015 pour les entreprises concevant des circuits intégrés. Ces pertes pourraient s’élever jusqu’à 36 milliards d’euros en 2016. Il est donc indispensable de trouver des solutions pratiques et efficaces pour lutter contre la contrefaçon et le vol de circuits intégrés. Le projet SALWARE, financé par l’Agence Nationale de la Recherche et par la Fondation de Recherche pour l’Aéronautique et l’Espace, a pour but de lutter contre le problème de la contrefaçon et du vol de circuits intégrés et propose l’étude et la conception de matériels salutaires (ou salwares). En particulier, l’un des objectifs de ce projet est de combiner astucieusement plusieurs mécanismes de protection participant à la lutte contre la contrefaçon et le vol de circuits intégrés, pour construire un système d’activation complet. L’activation des circuits intégrés après leur fabrication permet de redonner leur contrôle au véritable propriétaire de la propriété intellectuelle. Dans ce manuscrit de thèse, nous proposons l’étude de trois mécanismes de protection participant à la lutte contre la contrefaçon et le vol de circuits intégrés. Dans un premier temps, nous étudierons l’insertion et la détection de watermarks dans les machines à états finies des systèmes numériques synchrones. Ce mécanisme de protection permet de détecter un vol ou une contrefaçon. Ensuite, une fonction physique non-clonable basée sur des oscillateurs en anneaux dont les oscillations sont temporaires est implantée et caractérisée sur FPGA. Ce mécanisme de protection permet d’identifier un circuit grâce à un identifiant unique créé grâce aux variations du processus de fabrication des circuits intégrés. Enfin, nous aborderons l’implantation matérielle d’algorithmes légers de chiffrement par bloc, qui permettent d’établir une communication sécurisée au moment de l’activation d’un circuit intégré / Counterfeiting and theft affects all industrial activities in our society. Electronic products are the second category of products most concerned by these issues. Among the most affected electronic products, we find mobile phones, tablets, computers as well as more basic elements such as analog and digital circuits or integrated circuits. These are the heart of almost all electronic products and we can say that a mobile phone is counterfeited if it has at least one counterfeit integrated circuit inside. The market of counterfeit integrated circuit is estimated between 7 and 10% of the global semi-conductors market, which represents a loss of at least 24 billion euros for the lawful industry in 2015. These losses could reach 36 billion euros in 2016. Therefore, there is an absolute necessity to find practical and efficient methods to fight against counterfeiting and theft of integrated circuits. The SALWARE project, granted by the French "Agence Nationale de la Recherche" and by the "Fondation de Recherche pour l’Aéronautique et l’Espace", aims to fight against the problem of counterfeiting and theft of integrated circuitsFor that, we propose to design salutary hardwares (salwares). More specifically,we propose to cleverly combine different protection mechanisms to build a completeactivation system. Activate an integrated circuit after its manufacturing helpsto restore the control of integrated circuits to the true owner of the intellectualproperty.In this thesis, we propose the study of three different protection mechanismsfighting against counterfeiting and theft of integrated circuits. First, the insertionand the detection of watermark in the finite state machine of digital and synchronoussystems will be studied. This mechanism helps to detect counterfeit or theftparts. Then, a physical unclonable function based on transcient effect ring oscillatoris implemented and characterized on FPGA. This protection mechanism is used toidentify integrated circuit with a unique identifier created thanks to the extractionof entropy from manufacturing process variations. Finally, we discuss the hardwareimplementations of lightweight block ciphers, which establish a secure communicationduring the activation of an integrated circuit
2

Methods for protecting intellectual property of IP cores designers / Méthodes pour la protection de la propriété intellectuelle des concepteurs de composants virtuels

Colombier, Brice 19 October 2017 (has links)
La conception de circuits intégrés est aujourd'hui une tâche extrêmement complexe. Cela pousse les concepteurs à adopter une approche modulaire, où chaque bloc fonctionnel est décrit de manière indépendante. Ces blocs fonctionnels, appelés composants virtuels, sont vendus par leurs concepteurs à des intégrateurs système qui les utilisent dans des projets complexes. Cette division a pour conséquence une hausse inquiétante des cas de copie illégale des composants virtuels. Afin de lutter contre cette menace sur la propriété intellectuelle des concepteurs, l'objectif de cette thèse était de mettre au point un système complet d'activation à distance de composants virtuels, permettant au concepteur de savoir exactement combien de composants virtuels sont effectivement utilisés. Pour cela, les deux premières contributions de cette thèse portent sur la modification de la logique combinatoire d'un composant virtuel afin de le rendre activable. La première méthode permet de forcer les sorties à une valeur fixe de manière contrôlée. La seconde est une technique efficace de sélection de nœuds à altérer, encore une fois de manière contrôlée, afin de rendre le composant virtuel temporairement inutilisable. La troisième contribution de cette thèse est une méthode légère de correction d'erreurs à appliquer aux réponses issues des fonctions physiques non-clonables, qui constituent un identifiant intrinsèque des instances du composant virtuel. Réutilisant un protocole de correction d'erreurs issu de l'échange quantique de dés, cette méthode est beaucoup plus légère que les codes correcteurs d'erreurs classiquement utilisés pour cette application / Designing integrated circuits is now an extremely complex task. This is why designers adopt a modular approach, where each functional block is described independently. These functional blocks, called intellectual property (IP) cores, are sold by their designers to system integrators who use them in complex projects. This division led to the rise of cases of illegal copying of IP cores. In order to fight this threat against intellectual property of lP core designers, the objective of this PhD thesis was to develop a secure remote activation scheme for IP cores, allowing the designer to know exactly how many IP cores are currently used. To achieve this, the first two contributions of thesis thesis deal with the modification of combinational logic of an IP core to make it activable. The first method allows to controllably force the outputs to a fixed logic value. The second is an efficient technique to select the nodes to controllably alter, so that the IP core is temporarily unusable. The third contribution of this thesis is a lightweight method of error correction to use with PUF (Physical Undonable Functions) responses, which are an intrinsic identifier of instances of the lP core. Reusing an error-correction protocol used in quantum key ex.change, this method is much more lightweight than error-correcting

Page generated in 0.1554 seconds