• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eulerian calculus arising from permutation statistics / Calcul Eulériens sur permutations

Lin, Zhicong 29 April 2014 (has links)
En 2010 Chung, Graham et Knuth ont démontré une remarquable identité symétrique sur les nombres eulériens et posé le problème de trouver un q-analogue de leur identité. En utilisant les q-polynômes eulériens introduits par Shareshian-Wachs, nous avons pu obtenir une telle q-identité. La preuve bijective que nous avons imaginée, nous a permis ensuite de démontrer d'autres q-identités symétriques, en utilisant un modèle combinatoire dû à Foata-Han. Entre temps, Hyatt a introduit les fonctions quasisymétriques eulériennes colorées afin d'étudier la distribution conjointe du nombre d'excédances et de l'indice majeur sur les permutations colorées. En appliquant le Decrease Value Theorem de Foata-Han, nous donnons d'abord une nouvelle preuve de sa formule principale sur la fonction génératrice des fonctions quasisymétriques eulériennes colorées, puis généralisons certaines identités eulériennes symétriques, en les exprimant comme des identités sur les fonctions quasisymétriques eulériennes colorées. D'autre part, en prolongeant les travaux récents de Savage-Visontai et Bec-raun, nous considérons plusieurs q-polynômes de descente des mots signés. Leurs fonctions génératrices factorielles et multivariées sont explicitement calculées. Par ailleurs, nous montrons que certains de ces polynômes n'ont que des zéros réels. Enfin, nous étudions la fonction génératrice diagonale des nombres de Jacobi Stirling de deuxième espèce, en généralisant des résultats analogues pour les nombres de Stirling et Legendre-Stirling de deuxième espèce. Il s'avère que cette fonction génératrice est une série rationnelle dont le numérateur est un polynôme à coefficients entiers positifs. En appliquant la théorie des P-partitions de Stanley nous trouvons des interprétations combinatoires de ces coefficients / In 2010 Chung-Graham-Knuth proved an interesting symmetric identity for the Eulerian numbers and asked for a q-analog version. Using the q-Eulerian polynomials introduced by Shareshian-Wachs we find such a q-identity. Moreover, we provide a bijective proof that we further generalize to prove other symmetric qidentities using a combinatorial model due to Foata-Han. Meanwhile, Hyatt has introduced the colored Eulerian quasisymmetric functions to study the joint distribution of the excedance number and major index on colored permutations. Using the Decrease Value Theorem of Foata-Han we give a new proof of his main generating function formula for the colored Eulerian quasisymmetric functions. Furthermore, certain symmetric q-Eulerian identities are generalized and expressed as identities involving the colored Eulerian quasisymmetric functions. Next, generalizing the recent works of Savage-Visontai and Beck-Braun we investigate some q-descent polynomials of general signed multipermutations. The factorial and multivariate generating functions for these q-descent polynomials are obtained and the real rootedness results of some of these polynomials are given. Finally, we study the diagonal generating function of the Jacobi-Stirling numbers of the second kind by generalizing the analogous results for the Stirling and Legendre-Stirling numbers of the second kind. It turns out that the generating function is a rational function, whose numerator is a polynomial with nonnegative integral coefficients. By applying Stanley’s theory of P-partitions we find combinatorial interpretations of those coefficients
2

Deux exemples d'algèbres de Hopf d'extraction-contraction : mots tassés et diagrammes de dissection / Two examples of Hopf algebras with a selection-quotient coprodut : packed words and dissection diagrams

Mammez, Cécile 27 November 2017 (has links)
Ce manuscrit est consacré à l'étude de la combinatoire de deux algèbres de Hopf d'extraction-contraction. La première est l'algèbre de Hopf de mots tassés WMat introduite par Duchamp, Hoang-Nghia et Tanasa dont l'objectif était la construction d'un modèle de coproduit d'extraction-contraction pour les mots tassés. Nous expliquons certains sous-objets ou objets quotients ainsi que des applications vers d'autres algèbres de Hopf. Ainsi, nous considérons une algèbre de permutations dont le dual gradué possède un coproduit de déconcaténation par blocs et un produit de double battage décalé. Le double battage engendre la commutativité de l'algèbre qui est donc distincte de celle de Malvenuto et Reutenauer. Nous introduisons également une algèbre de Hopf engendrée par les mots tassés de la forme x₁...x₁. Elle est isomorphe à l'algèbre de Hopf des fonctions symétriques non commutatives. Son dual gradé est donc isomorphe à l'algèbre de Hopf des fonctions quasi-symétriques. Nous considérons également une algèbre de Hopf de compositions et donnons son interprétation en termes de coproduit semi-direct d'algèbres de Hopf. Le deuxième objet d'étude est l'algèbre de Hopf de diagrammes de dissection HD introduite par Dupont en théorie des nombres. Nous cherchons des éléments de réponse concernant la nature de sa cogèbre sous-jacente. Est-elle colibre ? La dimension des éléments primitifs de degré 3 ne permet pas de conclure. Le cas du degré 5 permet d'établir la non-coliberté dans le cas où le paramètre de HD vaut - 1. Nous étudions également la structure pré-Lie du dual gradué HD. Nous réduisons le champ de recherche à la sous-algèbre pré-Lie non triviale engendrée par le diagramme de dissection de degré 1. Cette algèbre pré-Lie n'est pas libre. / This thesis deals with the study of combinatorics of two Hopf algebras. The first one is the packed words Hopf algebra WMAT introduced by Duchamp, Hoang-Nghia, and Tanasa who wanted to build a coalgebra model for packed words by using a selection-quotient process. We describe certain sub-objects or quotient objects as well as maps to other Hopf algebras. We consider first a Hopf algebra of permutations. Its graded dual has a block deconcatenation coproduct and double shuffle product. The double shuffle product is commutative so the Hopf algebra is different from the Malvenuto and Reutenauer one. We analyze then the Hopf algebra generated by packed words looking like x₁...x₁. This Hopf algebra and non commutative symmetric functions are isomorphic. So its graded dual and quasi-symmetric functions are isomorphic too. Finally we consider a Hopf algebra of compositions an give its interpretation in terms of a semi-direct coproduct structure. The second objet we study is the Hopf algebra of dissection diagrams HD introduced by Dupont in number theory. We study the cofreedom problem. We can't conclude with homogeneous primitive elements of degree 3. With the degree 5 case, we can say that is not cofree with the parameter -1. We study the pre-Lie algebra structure of HD's graded dual too. We consider in particular the sup-pre-Lie algebra generated by the dissection diagram of degree 1. It is not a free pre-Lie algebra.

Page generated in 0.1042 seconds