• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aroma detection and control in passive and dynamic food systems for superior product

Li, Zhenfeng, 1968 Oct. 9- January 2008 (has links)
Passive (static) and dynamic studies have shown aroma to be an important aspect of food quality, which can be used to differentiate, classify, and grade foodstuffs, and in some cases it can be used to predict other quality characteristics. Monitoring and control of food aroma changes during food processing can significantly improve the quality of the final product in terms of flavour, color, taste, and overall appearance. Hence, it is a prominent and urgent field of study in the post production systems. / Passive aroma detection of unprocessed foods and dynamic aroma detection during food processing was undertaken using a fast GC analyzer -- zNose. During the study on the passive aroma detection, the aroma of Chinese spirits (Fenjiu) and mango (Mangifera indica L.) fruits, (i.e., liquid and solid states, respectively) was analyzed. In the study of Chinese spirits, aroma profiles of Fenjiu liquor samples of different quality levels were acquired and used for quality classification and prediction. Measurements of dielectric properties of the samples were also conducted to estimate alcohol concentration. In the study of mango fruits, aroma changes of mango samples were monitored during their shelf life and used to evaluate mango quality. Ripening and rots were detected with 80% and 93% accuracy, respectively. / During the study of dynamic aroma detection, a real-time aroma monitoring and control system was developed for use during microwave drying. Aroma signals of a processed food item were detected with zNose and analyzed with a fuzzy logic algorithm to determine the optimal food drying temperature. Phase control was used to adjust the microwave power level to meet temperature requirements. Carrot (Daucus carota L.) and apple (Malus domestica Borkh) were selected as representatives of vegetables and fruits. In carrot drying, samples could be dried in a short time at high temperatures but the interior of some sample cubes was burnt. Drying at a lower temperature extended the drying process, but led to a great loss of aroma in the finished product.' The best results were obtained at 60°C. Based on these results, a fuzzy logic controller was designed and employed to control the drying process according to carrot aroma changes. To investigate the possibility of aroma improvement without zNose assistance, a linear control method was developed whereby a temperature control profile imitated the fuzzy logic control, but aroma control was not included. With these new control strategies, the carrot color and flavour were significantly improved and less time and power were consumed. Similar results were achieved when apple was microwave-dried. Apple aroma was monitored online during microwave drying processes and controlled with similar fuzzy and linear control strategies. Apple color, aroma, and overall appearance remained intact with the new strategies and less time and power were consumed. In contrast to the carrot drying, a different linear temperature profile was required for apple drying in terms of aroma retention.
2

Aroma detection and control in passive and dynamic food systems for superior product

Li, Zhenfeng, 1968 Oct. 9- January 2008 (has links)
No description available.
3

Identification of odorous compounds in commercial chaw tofu and evaluation of the quality of model broths during fermentation.

January 2005 (has links)
Cheung Hiu-Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 140-150). / Abstracts in English and Chinese. / ABSTRACT --- p.i / ACKNOWLEDGEMENTS --- p.vi / LIST OF FIGURES --- p.xiii / LIST OF TABLES --- p.xv / Chapter CHAPTER 1 --- LITERATURE REVIEW --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Soybeans --- p.3 / Chapter 1.2.1 --- Chemistry and nutritional value of soybeans --- p.3 / Chapter 1.2.2 --- Protein composition of soybeans --- p.4 / Chapter 1.2.3 --- Volatile compounds in soybeans --- p.4 / Chapter 1.3 --- Food fermentation --- p.5 / Chapter 1.4 --- Chaw tofu --- p.6 / Chapter 1.4.1 --- Preparation of tofu --- p.7 / Chapter 1.4.2 --- Preparation of chaw tofu --- p.7 / Chapter 1.4.3 --- Microorganisms involved in fermentation of chaw tofu --- p.8 / Chapter 1.4.4 --- Volatile components in chaw tofu --- p.11 / Chapter 1.4.5 --- Proteolytic activity of chaw tofu --- p.12 / Chapter 1.5 --- Stinky brine broth --- p.13 / Chapter 1.5.1 --- The pH value of stinky brine broth --- p.13 / Chapter 1.5.2 --- The salt percentage of stinky brine broth --- p.14 / Chapter 1.5.3 --- Volatile components of stinky brine broth --- p.14 / Chapter 1.5.4 --- Parameters affecting ammonia production of stinky brine --- p.15 / Chapter 1.6 --- Other fermented soy products --- p.16 / Chapter 1.6.1 --- Microorganisms involved in the fermentation --- p.16 / Chapter 1.6.1.1 --- Fermentation of soybean by bacteria --- p.17 / Chapter 1.6.1.1.1 --- Natto --- p.17 / Chapter 1.6.1.1.2 --- Kinema --- p.18 / Chapter 1.6.1.1.3 --- Soy daddawa --- p.19 / Chapter 1.6.1.1.4 --- Hawaijar --- p.20 / Chapter 1.6.1.1.5 --- Thua nao --- p.21 / Chapter 1.6.1.2 --- Fermentation of soybean by moulds --- p.21 / Chapter 1.6.1.2.1 --- Tempe --- p.21 / Chapter 1.6.1.2.2 --- Sufu --- p.22 / Chapter 1.6.1.2.3 --- Soy sauce --- p.22 / Chapter 1.6.1.2.4 --- Soy paste --- p.23 / Chapter 1.6.2 --- Formation of volatile compounds during Bacillus fermentation --- p.24 / Chapter 1.6.3 --- Biochemical changes during fermentation --- p.21 / Chapter 1.7 --- Methods of flavor analysis --- p.30 / Chapter 1.7.1 --- Headspace Analysis --- p.31 / Chapter 1.7.2 --- Aroma characterization --- p.32 / Chapter CHAPTER 2 --- IDENTIFICATION OF ODOROUS COMPOUNDS IN COMMERCIAL CHAW TOFU BASED ON ODOR ACTIVITY EVALUATION --- p.42 / Chapter 2.1 --- Introduction --- p.43 / Chapter 2.2 --- Materials & Methods --- p.46 / Chapter 2.2.1 --- Experimental samples --- p.46 / Chapter 2.2.2 --- Headspace-Gas Chromatography-Mass Spectrometry (GC-MS) --- p.46 / Chapter 2.2.3 --- Conditions of the Gas Chromatography-Mass Spectrometry (GC-MS) --- p.47 / Chapter 2.2.4 --- Compound identifications --- p.48 / Chapter 2.2.5 --- Quantification of compounds --- p.48 / Chapter 2.2.6 --- Statistical analysis --- p.48 / Chapter 2.2.7 --- Calculation of odor activity value (OAV) --- p.49 / Chapter 2.3 --- Results & Discussion --- p.50 / Chapter 2.3.1 --- Odor activity value (OAV) --- p.51 / Chapter 2.3.2 --- Volatile compounds in fresh samples --- p.51 / Chapter 2.3.2.1 --- Comparison of odorous compounds in fresh samples among different locations --- p.52 / Chapter 2.3.3 --- Volatile compounds in deep-fat fried samples --- p.53 / Chapter 2.3.3.1 --- Comparison of odorous compounds in deep-fat fried samples among different locations --- p.54 / Chapter 2.3.4 --- Comparison between fresh and deep-fat fried samples --- p.55 / Chapter 2.3.5 --- Odorous compounds of chaw tofu based on OAVs --- p.56 / Chapter 2.3.6 --- Possible ways for formation of odorous compounds --- p.58 / Chapter 2.3.6.1 --- Protein degradation --- p.58 / Chapter 2.3.6.2 --- Lipid degradation --- p.59 / Chapter 2.3.7 --- Comparison between volatile compounds in chaw tofu and others fermented soybean products --- p.60 / Chapter 2.4 --- Conclusion --- p.61 / Chapter CHAPTER 3 --- IDENTIFICATION OF ODOROUS COMPOUNDS IN COMMERCIAL CHAW TOFU BASED ON GAS CHROMATOGRAPHY-OLFACTOMETRY --- p.67 / Chapter 3.1 --- Introduction --- p.68 / Chapter 3.2 --- Materials & Methods --- p.71 / Chapter 3.2.1 --- Experimental samples --- p.71 / Chapter 3.2.2 --- Gas Chromatography-Mass Spectrometry-Flame Ionization Detection-Olfactometry (GC-MS-FID-O) --- p.71 / Chapter 3.2.3 --- Conditions of the Gas Chromatography-Mass Spectrometry --- p.72 / Chapter 3.2.4 --- Detection of odor active compounds --- p.73 / Chapter 3.2.5 --- Compound identifications --- p.73 / Chapter 3.3 --- Results & Discussion --- p.74 / Chapter 3.3.1 --- "Fecal, rancid and putrid odor" --- p.74 / Chapter 3.3.2 --- "Cabbages, sulfurous and meaty odor" --- p.76 / Chapter 3.3.3 --- Green odor --- p.77 / Chapter 3.3.4 --- Other odor contributing compounds --- p.77 / Chapter 3.3.5 --- Odor generate during deep-fat frying --- p.78 / Chapter 3.3.6 --- Comparison between GC-O and OAVs --- p.79 / Chapter 3.3.7 --- Comparison between volatile compounds in chaw tofu and others fermented soybean products --- p.80 / Chapter 3.4 --- Conclusion --- p.82 / Chapter CHAPTER 4 --- EVALUATION OF CHAW TOFU MODEL FERMENTATION BROTH --- p.86 / Chapter 4.1 --- Introduction --- p.87 / Chapter 4.2 --- Materials & Methods --- p.90 / Chapter 4.2.1 --- Model fermentation broth preparation --- p.90 / Chapter 4.2.2 --- Tofu sample preparation --- p.91 / Chapter 4.2.3 --- Gas Chromatography-Mass Spectrometry --- p.91 / Chapter 4.2.3.1 --- Conditions of Gas Chromatography-Mass Spectrometry (GC-MS) --- p.92 / Chapter 4.2.3.2 --- Compound identification --- p.93 / Chapter 4.2.3.3 --- Quantification of compounds --- p.93 / Chapter 4.2.4 --- Viable cell counts --- p.93 / Chapter 4.2.5 --- pH value and soluble content --- p.94 / Chapter 4.2.6 --- Proteolytic activity --- p.94 / Chapter 4.2.7 --- Statistical analysis --- p.95 / Chapter 4.3 --- Results & Discussion --- p.96 / Chapter 4.3.1 --- Headspaces analysis --- p.96 / Chapter 4.3.1.1 --- Changes in volatile composition in model fermentation broths --- p.97 / Chapter 4.3.1.2 --- Comparison of volatile compositions between the broths --- p.98 / Chapter 4.3.1.3 --- Comparison of volatile compositions among the three deep-fat fried fermented tofu with different broths --- p.101 / Chapter 4.3.1.4 --- Comparison of volatile compositions of deep fat fried fermented tofu with that of the commercial chaw tofu --- p.102 / Chapter 4.3.2 --- Liquid samples analysis --- p.104 / Chapter 4.3.2.1 --- "Changes in viable cell counts, pH values, protease activities and soluble solid contents within model fermentation broths during fermentation" --- p.106 / Chapter 4.3.2.2 --- Viable cell counts --- p.107 / Chapter 4.3.2.3 --- Soluble solid content --- p.108 / Chapter 4.3.2.4 --- Proteolytic activity --- p.106 / Chapter 4.3.2.5 --- pH value --- p.110 / Chapter 4.4 --- Conclusion --- p.112 / Chapter CHAPTER 5 --- GENERAL CONCLUSION --- p.127 / APPENDIX --- p.130 / IDENTIFICATION OF MICROORGANISMS PRESENTED IN THE MODEL CHAW TOFU FERMENTATION BROTHS BY MICROBIAL IDENTIFICATION SYSTEM (MIDI) --- p.130 / Materials & Methods --- p.130 / Model fermentation broth preparation --- p.130 / Viable cell counts --- p.131 / Microbial Identification System (MIDI) --- p.131 / Results --- p.133 / Suggestion on further investigation --- p.134 / REFERNECES --- p.141

Page generated in 0.0458 seconds