• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • 1
  • Tagged with
  • 23
  • 11
  • 10
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Geochemical Study of Crustal Plutonic Rocks from the Southern Mariana Trench Forearc: Relationship to Volcanic Rocks Erupted during Subduction Initiation

Johnson, Julie A 26 March 2014 (has links)
Two suites of intermediate-felsic plutonic rocks were recovered by dredges RD63 and RD64 (R/V KK81-06-26) from the northern wall of the Mariana trench near Guam, which is located in the southern part of the Izu-Bonin-Mariana (IBM) island arc system. The locations of the dredges are significant as the area contains volcanic rocks (forearc basalts and boninites) that have been pivotal in explaining processes that occur when one lithospheric plate initially begins to subduct beneath another. The plutonic rocks have been classified based on petrologic and geochemical analyses, which provides insight to their origin and evolution in context of the surrounding Mariana trench. Based on whole rock geochemistry, these rocks (SiO2: 49-78 wt%) have island arc trace element signatures (Ba, Sr, Rb enrichment, Nb-Ta negative anomalies, U/Th enrichment), consistent with the adjacent IBM volcanics. Depletion of rare earth elements (REEs) relative to primitive mantle and excess Zr and Hf compared to the middle REEs indicate that the source of the plutonic rocks is similar to boninites and transitional boninites. Early IBM volcanic rocks define isotopic fields (Sr, Pb, Nd and Hf-isotopes) that represent different aspects of the subduction process (e.g., sediment influence, mantle provenance). The southern Mariana plutonic rocks overlap these fields, but show a clear distinction between RD63 and RD64. Modeling of the REEs, Zr and Hf shows that the plutonic suites formed via melting of boninite crust or by crystallization from a boninite-like magma rather than other sources that are found in the IBM system. The data presented support the hypothesis that the plutonic rocks from RD63 and RD64 are products of subduction initiation and are likely pieces of middle crust in the forearc exposed at the surface by faulting and serpentine mudvolcanoes. Their existence shows that intermediate-felsic crust may form very early in the history of an intra-oceanic island arc system. Plutonic rocks with similar formation histories may exist in obducted suprasubduction zone ophiolites and would be evidence that felsic-intermediate forearc plutonics are eventually accreted to the continents.
22

High temperature forearc metamorphism and consequences for sulfide stability in the Pacific Rim Terrane, British Columbia

Geen, Alexander C. 25 June 2021 (has links)
The Pacific Rim Terrane in British Columbia is a group of fault-bound forearc metasedimentary and metaigneous rocks subcreted to Wrangellia, comprising three lithological units: the Leech River Complex (LRC), the Pandora Peak Unit (PPU), and the Pacific Rim Complex. Of these three, the LRC and PPU were subject to an elevated thermal metamorphic event which locally overprinted typical low temperature, medium pressure forearc assemblages with low greenschist through amphibolite facies assemblages. The field study shows that biotite, garnet and staurolite isograds occur concentrically in the LRC, centered on the Leech River fault, which separates the Pacific Rim Terrane from the underlying Metchosin Igneous Complex of the Crescent terrane. Local thermal overprint in the PPU is sub-biotitic and is characterized by local replacement of prehnite-pumpellyite and lawsonite-bearing assemblages with muscovite ± chlorite. Multi-method geothermobarometry shows peak metamorphic temperatures from ~230 °C in the northern PPU to ~600 °C near the Leech River fault at ~4 kbar, and isotherms are continuous across the LRC-PPU boundary. The interfoliated Tripp Creek metabasites and Eocene Walker Creek intrusions do not control the distribution of isotherms, and syn-metamorphic felsic sills rarely have contact aureoles. Intercalated metabasites show two distinct rare earth element (REE) patterns, including NMORB-like light REE depletion among most Tripp Creek metabasites, and light REE enrichment in PPU metabasites. The lack of thermal aureoles associated with metabasites, and interlayered garnetite bands with negative Ce-anomalies attributed to seafloor hydrothermal processes, suggest the Tripp Creek metabasites are not syn-metamorphic sills and formed prior to accretion. The subcretion of then recently formed oceanic crust belonging to the Crescent terrane is identified as the probable cause of anomalously high temperature forearc conditions, as well as possible proximity to an Eocene mid ocean ridge. The high temperature metamorphic rocks in the Pacific Rim Terrane document the conversion of inherited primary pyrite to pyrrhotite in carbonaceous metasediments. S-inclusive pseudosections for LRC protoliths predict a low temperature (<420 °C) narrow pyrite desulfidation window that produces pyrrhotite and releases negligible S to the fluid phase. Conversely, sulfide petrography in the LRC shows pyrite can persist up to ~550 °C as inclusions in andalusite and staurolite porphyroblasts, as well as possibly in the rock matrix. S contents in carbonaceous pelites show a marked reduction at medium grade, associated with a dearth of visible sulfide in LRC phyllites. Sluggish pyrite desulfidation, pyrrhotite desulfidation, and terrane-scale S mobility are interpreted as the driver for mobility of intra-terrane sourced Au, leading to the formation of a hypozonal orogenic Au deposit in the central LRC. / Graduate / 2022-06-11
23

Banda Forearc Metamorphic Rocks Accreted to the Australian Continental Margin: Detailed Analysis of the Lolotoi Complex of East Timor

Standley, Carl Eldon 29 January 2007 (has links) (PDF)
Petrologic, structural and age investigations of the Lolotoi Complex of East Timor indicate that it is part of a group of thin metamorphic klippen found throughout the region that were detached from the Banda forearc and accreted to the NW Australian continental margin during Late Miocene to Present arc-continent collision. Metamorphic rock types are dominated by (in order of greatest to least abundance), greenschist, graphitic phyllite, quartz-mica schist, amphibolite and pelitic schist. Mineral, whole rock, and trace element geochemical analyses of metabasites indicate that protolith compositions are consistent with tholeiitic basalt and basaltic andesite with mixed MORB and oceanic arc affinities. Metapelitic schist compositions are consistent with mafic to intermediate oceanic to continental arc provenance. Geothermobarometric calculations show peak metamorphic temperatures in pelitic rocks range from 530°C to 610°C for garnet-biotite pairs and peak pressures of 5 to 8 kbar for garnet-aluminosilicate-quartz-plagioclase assemblages. Analyses of amphibole in amphibolites yield temperatures of 550°C to 650°C and pressures of 6 to 7 kbar. Lu-Hf analyses performed on garnet samples from two massifs in East Timor yielded four ages with a mean of 45.36 ± 0.63 Ma, which is interpreted to represent the approximate age of peak metamorphism. Detrital zircons from one amphibolite sample in East Timor yields a bimodal U-Pb age distribution of 560 Ma and 80 Ma, indicating deposition occurred after the 80 Ma closure of the zircon grains. The sequence of deformation as indicated by field measurements is similar to that reported from other klippen throughout the Timor region. Contact relationships with adjacent units indicate that the metamorphic terrane is in thrust contact with underlying Gondwana Sequence rocks. Overlying the metamorphic rocks are Asian affinity volcanic and sedimentary cover units found mostly in normal fault contact on the edges of Lolotoi Complex klippen. Geochemical, age, petrological and structural data imply the Lolotoi Complex formed part of the eastern Great Indonesian arc, which began to collapse in the Eocene, was incorporated into the Banda arc in the Miocene, and accreted to the Austrailian continental margin from Pliocene to Present.

Page generated in 0.4986 seconds