Spelling suggestions: "subject:"forest carbon balance"" "subject:"corest carbon balance""
1 |
Biometric and eddy-covariance estimates of ecosystem carbon storage at two boreal forest stands in Saskatchewan : 1994-2004Theede, Alison Deanne 31 May 2007
The boreal forest is one of the worlds largest forest biomes and comprises a major portion of the terrestrial carbon (C) sink. Quantifying the net C change in forest ecosystems is an important step in understanding and modeling the global C cycle. The goals of this project were: to estimate and compare the total change in ecosystem C over a 10-year period in two boreal forest stands using biometric and eddy-covariance approaches, and to evaluate the year-to-year changes in C uptake. This study utilized 10 years of eddy-covariance data and ecosys model data from the Old Aspen (OA) and Old Jack Pine (OJP) sites in central Saskatchewan, part of the Boreal Ecosystem Research and Monitoring Sites (BERMS). According to the eddy-covariance and C stock approaches, between 1994 and 2004 the net change in C storage at OA was 15.6 ± 4.0 and 18.2 ± 8.0 Mg C ha-1, respectively. At OJP, the 10-year net change in C storage from eddy-covariance was 5.8 ± 2.0 Mg C ha-1 in comparison to 6.9 ± 1.6 Mg C ha-1 from the carbon stock approach. While both sites were sinks of C between 1994 and 2004, the greatest increase in C occurred in different components - the forest floor at OA (14.6 Mg C ha-1) and in the living vegetation at OJP (8.0 Mg C ha-1). In 2004, total ecosystem C content was greater at OA (180.6 Mg C ha-1) than OJP (78.9 Mg C ha-1), with 50% (OA) and 39% (OJP) of the C in the detritus and mineral soil pools. During the 10-year period of eddy-covariance measurements, there was a positive correlation between both annual and growing season gross ecosystem photosynthesis (GEP) and live stem C biomass increment at OA, whereas no significant relationships were found at OJP. Stem C increment accounted for 30% of total net primary productivity (NPP) at both sites, and NPP/GEP ratios were 0.36 and 0.32 at OA and OJP, respectively. Overall, this study found good agreement between eddy-covariance and biometric estimates of ecosystem C change at OA and OJP between 1994 and 2004. Over that period at OA, eddy-covariance estimates of photosynthesis captured the inter-annual variability in C uptake based on the growth of tree rings.
|
2 |
Biometric and eddy-covariance estimates of ecosystem carbon storage at two boreal forest stands in Saskatchewan : 1994-2004Theede, Alison Deanne 31 May 2007 (has links)
The boreal forest is one of the worlds largest forest biomes and comprises a major portion of the terrestrial carbon (C) sink. Quantifying the net C change in forest ecosystems is an important step in understanding and modeling the global C cycle. The goals of this project were: to estimate and compare the total change in ecosystem C over a 10-year period in two boreal forest stands using biometric and eddy-covariance approaches, and to evaluate the year-to-year changes in C uptake. This study utilized 10 years of eddy-covariance data and ecosys model data from the Old Aspen (OA) and Old Jack Pine (OJP) sites in central Saskatchewan, part of the Boreal Ecosystem Research and Monitoring Sites (BERMS). According to the eddy-covariance and C stock approaches, between 1994 and 2004 the net change in C storage at OA was 15.6 ± 4.0 and 18.2 ± 8.0 Mg C ha-1, respectively. At OJP, the 10-year net change in C storage from eddy-covariance was 5.8 ± 2.0 Mg C ha-1 in comparison to 6.9 ± 1.6 Mg C ha-1 from the carbon stock approach. While both sites were sinks of C between 1994 and 2004, the greatest increase in C occurred in different components - the forest floor at OA (14.6 Mg C ha-1) and in the living vegetation at OJP (8.0 Mg C ha-1). In 2004, total ecosystem C content was greater at OA (180.6 Mg C ha-1) than OJP (78.9 Mg C ha-1), with 50% (OA) and 39% (OJP) of the C in the detritus and mineral soil pools. During the 10-year period of eddy-covariance measurements, there was a positive correlation between both annual and growing season gross ecosystem photosynthesis (GEP) and live stem C biomass increment at OA, whereas no significant relationships were found at OJP. Stem C increment accounted for 30% of total net primary productivity (NPP) at both sites, and NPP/GEP ratios were 0.36 and 0.32 at OA and OJP, respectively. Overall, this study found good agreement between eddy-covariance and biometric estimates of ecosystem C change at OA and OJP between 1994 and 2004. Over that period at OA, eddy-covariance estimates of photosynthesis captured the inter-annual variability in C uptake based on the growth of tree rings.
|
3 |
A comparison of gap-filling methods for a long-term eddy covariance dataset from a Northern Old-growth Black Spruce forestSoloway, Ashley 24 August 2016 (has links)
Boreal old-growth forests are key determinants in the global carbon cycle. It is unknown how the role of persistent old-growth forests will be in the carbon cycle in the face of predicted climatic changes. Eddy-covariance measurements are commonly used to quantify carbon exchange between ecosystems, such as forests, and the atmosphere. Error due to gap-fill method is of particular interest in these datasets. Here we filled a 15-year eddy covariance dataset from the Northern Old-Growth Boreal Black Spruce (Picea mariana) site located near Thompson, in central Manitoba, Canada using four different gap-fill methods. Our objectives were to determine if choice of gap-fill method affected annual NEP and if these errors compounded to even greater differences over the 15-year study period. Most significant differences in NEP among methods occurred from September to December, but variations during the growing season were responsible for most of the annual differences. / October 2016
|
Page generated in 0.1054 seconds