• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of coarse woody debris on site productivity of some forest sites in southwestern British Columbia

Kayahara, Gordon John 11 1900 (has links)
I explored the importance of decaying wood to survival and growth of trees in south coastal British Columbia, and the effect of decaying wood on the intensity of podzolization on mesic sites. A field pot study was carried out in both high light and low light conditions using woody and non-woody forest floor materials. After two growing seasons, Pseudotsuga menziesii, Tsuga heterophylla, and Abies amabilis seedlings growing in clearcuts had greater survival and growth in the non-woody substrate; however, in the understory, the effect was much less. The proliferation of western hemlock roots was used as an indicator of the value of decaying wood to trees. In both greenhouse trials (using seed sown on a series of planting pots with each half filled with either a woody substrate or a non-woody substrate), and in field sampling of woody and non-woody substrates in mature stands, the non-woody substrate had a larger density of fine and very fine roots compared to the woody substrates or mineral soil. Ten litres of concentrated solutions of non-woody humus substrate and woody substrates were leached through soil columns. Both the non-woody and woody solutions had similar mean pH but significantly different chemical properties. The non-woody solution leachate had greater net average output of dissolved organic C, Fe, and Mn. The mineral soil treated with the nonwoody solution had significantly greater concentrations of total N and pyrophosphate-extractable Fe. In the field, forest floor and soil samples were compared between pedons having large accumulation of decaying wood and pedons with non-woody humus forms. Despite large and significant differences in chemical properties between the two substrates, there were generally no significant differences between the chemical properties of the soils directly under these substrates. In most cases, the results of (3-analyses showed that the means were not pedologically different. Additionally, 18 pairs of zero tension plate lysimeters were installed under the two substrates. The lysimeter solutions showed no significant differences. I concluded that coarse woody debris appears not to have either a positive effect of increased productivity of trees or a negative effect of increased intensity of podzolization.
2

The effect of coarse woody debris on site productivity of some forest sites in southwestern British Columbia

Kayahara, Gordon John 11 1900 (has links)
I explored the importance of decaying wood to survival and growth of trees in south coastal British Columbia, and the effect of decaying wood on the intensity of podzolization on mesic sites. A field pot study was carried out in both high light and low light conditions using woody and non-woody forest floor materials. After two growing seasons, Pseudotsuga menziesii, Tsuga heterophylla, and Abies amabilis seedlings growing in clearcuts had greater survival and growth in the non-woody substrate; however, in the understory, the effect was much less. The proliferation of western hemlock roots was used as an indicator of the value of decaying wood to trees. In both greenhouse trials (using seed sown on a series of planting pots with each half filled with either a woody substrate or a non-woody substrate), and in field sampling of woody and non-woody substrates in mature stands, the non-woody substrate had a larger density of fine and very fine roots compared to the woody substrates or mineral soil. Ten litres of concentrated solutions of non-woody humus substrate and woody substrates were leached through soil columns. Both the non-woody and woody solutions had similar mean pH but significantly different chemical properties. The non-woody solution leachate had greater net average output of dissolved organic C, Fe, and Mn. The mineral soil treated with the nonwoody solution had significantly greater concentrations of total N and pyrophosphate-extractable Fe. In the field, forest floor and soil samples were compared between pedons having large accumulation of decaying wood and pedons with non-woody humus forms. Despite large and significant differences in chemical properties between the two substrates, there were generally no significant differences between the chemical properties of the soils directly under these substrates. In most cases, the results of (3-analyses showed that the means were not pedologically different. Additionally, 18 pairs of zero tension plate lysimeters were installed under the two substrates. The lysimeter solutions showed no significant differences. I concluded that coarse woody debris appears not to have either a positive effect of increased productivity of trees or a negative effect of increased intensity of podzolization. / Forestry, Faculty of / Graduate

Page generated in 0.122 seconds