• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Site relationships for Pinus patula in the Eastern Transvaal escarpment area.

Schutz, Christopher John. January 1990 (has links)
The largest area of commercial timber plantations in southern Africa is situated along the Eastern Transvaal Drakensberg Escarpment north of Nelspruit. The site requirements of tree species in this area are poorly understood. The purpose of this study was to examine site-tree relationships in the region and the implications of such relationships for the science of forestry. Pinus patula Schiede & Deppe in Schlecht. & Cham. was selected for the study as it is the most widely planted species in the region. In Chapter 1 the geology, geomorphology, climate, soils and vegetation of the study area are described. A geological map was compiled. Soil descriptions were based on 439 soil pits distributed so as to cover the range of site conditions in the area. The regression techniques used to identify key environmental factors and to model their relationships with tree parameters are described in Chapter 2, in which site-growth relationships specifically are investigated. In mature stands of P. patula 159 plots were established in such a way as to cover the widest variation in both site conditions and tree growth. The relationship between site index (mean top height at 20 years) and 100 site plus 10 stand parameters recorded at each plot was modelled by means of best-subsets, multiple and ridge regression. Several candidate models were compared on the basis of coefficient of determination and validation using independent data. The best model predicted the site index of the validation plots within 60 cm of the measured site index. The possible roles of the site variables identified by the models are discussed. In Chapter 3 site-foliar nutrient relationships are described. A close relationship was found between foliar and soil nutrient levels for the six major geological substrates. Site index was more accurately predicted from concentrations of individual foliar nutrients than from ratios of these nutrients. The Diagnosis and Recommendation Integrated System (DRIS), however, appeared to have greater potential for nutrient diagnosis. Provisional ORIS norms for P. patula were computed. In Chapter 4 the excessive accumulation of litter in P. patula stands was examined. Undecomposed litter layers were greater than 15 cm in thickness on nearly 25% of the 159 sites studied. Average litter layers contained greater amounts of nutrients than the underlying topsoil. Due to the colonization of the litter by tree roots, the degree of immobilization of nutrients in litter is not known. Environmental factors associated with variation in litter thickness were identified by models which explained up to 73% of the total variation. These factors are considered to act indirectly by promoting or retarding decay organisms. The possible implications of litter accumulation for the maintenance of site productivity are discussed. In Chapter 5 relationships between site and some wood properties are described. Although between-tree variation was larger than between-site variation, some important relationships with site were identified. 10% of all trees on the 159 plots had severe stem bumps. Most of the variables in a model to predict the severity of bumps could be interpreted as being associated with stem stability or exposure. The conclusion was that wind is probably the major cause of this defect. The findings of the study are summarized in Chapter 6. Particular attention is given to a synthesis of the possible roles of site factors in their relationships with the tree parameters investigated. There were strong relationships between tree parameters and mainly rainfall, altitude, soil wetness, exchangeable bases, effective rooting depth, slope position and geology. The single most deficient nutrient element appeared to be calcium. The implications for both research and management are outlined. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1990.
2

Effects of clear felling and residue management on nutrient pools, productivity and sustainability in a clonal eucalypt stand in South Africa

Dovey, Steven Bryan 12 1900 (has links)
Thesis (PhD(For))--Stellenbosch University, 2012. / The subtropical ecosystem of the Zululand coastal plain is prized by the South African commercial plantation forestry industry for its rapid clonal Eucalyptus growth, short rotations (6 to 7 years) and high yields. This region is typified by sandy soils that are low in clay and organic matter, have small nutrient reserves and are poorly buffered against nutrient loss. The subtropical climate induces rapid decomposition of residues and tree litter resulting in small litter nutrient pools and rapid nutrient release into the soil, particularly after clearfelling. A combination of large nutrient demands through rapid growth, rapid nutrient turnover and small soil nutrient reserves implies that sites in this region are sensitive and may be at risk of nutrient decline under intensive management. The work in this study set out to determine the risk of nutrient depletion through harvesting and residue management on a site within the Zululand region, to assess nutritional sustainability and the risk of yield decline in successive rotations. Some bulk biogeochemical cycling processes of macro-nutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were assessed, and assessments also included sodium (Na). An existing Eucalyptus stand was clearfelled and treatments were imposed on the residues after broadcasting to simulate various levels of nutrient loss through levels of harvesting intensity and residue management. These included residue burning (Burn), residue retention (No-Burn), fertilisation (stem wood nutrient replacement), whole tree harvesting and residue doubling. Outer blocks of the stand were not felled, but included as replicates of an undisturbed standing crop treatment. Biogeochemical nutrient cycling processes were assessed primarily in the standing crop, Burn and No-Burn treatments, in the assumption that these represented the furthest extremes of nutrient loss. Data collection commenced a year prior to clearfelling and continued to two years and six months after planting with key data collection over a 20.1 month period from clearfelling to canopy closure (one year after planting). Water related nutrient pools and fluxes were assessed as atmospheric deposition (bulk rainfall, throughfall and stemflow) and gravitational leaching to 1m soil depth. Drainage fluxes were predicted using the Hydrus model and real-time soil moisture data. Zero tension lysimeters collected soil solution for chemical analysis. Sequential coring in the 0 to 30cm soil layer was used to determine in situ soil N mineralisation. Soil chemical and physical properties were assessed over the first meter of soil at clearfelling and new crop canopy closure to determine soil nutrient pools sizes. Biomass nutrient fluxes were assessed from litterfall, residue and litter decomposition, and above ground accretion into the tree biomass. Leaching and N mineralisation were monitored in the No-Burn, Burn and standing crop treatments only. Atmospheric deposition, while variable, was shown to be responsible for large quantities of nutrients added to the Eucalyptus stand. Nitrogen and K additions were relatively high, but within ranges reported in previous studies. Rapid tree canopy expansion and subsequent soil water utilisation in the standing crop permitted little water to drain beyond 1m resulting in small leaching losses despite a sandy well drained soil. Further leaching beyond this depth was unlikely under the conditions during the study period. Mineralisation and immobilisation of N also remained low with net immobilisation occurring. The standing crop was shown to be a relatively stable system that, outside of extreme climatic events, had a relatively balanced or positive nutrient budget (i.e. nutrient inputs minus outputs). Large quantities of nutrients were removed with stem-wood-only harvesting in the No-Burn treatment leaving substantial amounts on the soil surface in the harvest residues. Whole tree removal increased losses of all nutrients resulting in the largest losses of P and base cations compared to all other treatments. This was mostly due to high nutrient concentrations in the removed bark. Loss of N in the Burn treatment exceeded whole tree N losses through combustion of N held in the harvest residues and litter layer. The majority of K leached from the residues prior to burning and a relatively small fraction of the base cations were lost from the partially decomposed residues during burning. Ash containing substantial amounts of Ca and relatively large amounts of N and Mg remained after burning. Surface soil Ca and Mg was significantly increased by the ash which moved into the soil with rainfall directly after burning. Rapid soil moisture recharge occurred within a few months after clearfelling, increasing leaching from the upper 50cm of soil. Clearfelling increased net N mineralisation rates, increasing mobile NO3-N ions in the soil surface layers. Nitrate concentration peaked and K concentration dipped in the upper soil layers of the Burn treatment directly after burning. Deep drainage and leaching (beyond 1m depth) over the 20.1 month period was, however, not significantly different between the Burn and No-Burn treatments. Rapid soil moisture depletion and nutrient uptake with new crop growth reduced leaching fluxes to levels similar to the standing crop by six months after planting. Taking the full rotation into account, clearfelling induced a short-lived spike in N and cation leaching compared with the low leaching losses in the undisturbed standing crop. Soil N mineralisation over the 20.1 month period in the burnt treatment was half that of the No-Burn treatment. Growth and nutrient accumulation was significantly higher in the fertilised treatment than in other treatments up to 2.5 years of age. Growth in the Burn treatment was greatest compared to other treatments during the first few months, but slowed thereafter. No significant growth differences were found between all other treatments from a year to 2.5 years after planting. Early growth was therefore apparently not limited by N supply despite large differences in N mineralisation between Burn and No-Burn. Foliar vector analysis indicated that fertilisation improved growth initially through increased foliar N and P at six months after planting followed by Mg and Ca at one year. The Burn treatment was not nutrient limited. These growth results contrasted with similar international research on sandy tropical sites where growth was reduced after residue removal and increased after residue doubling. The combined nutrients released from pools in the litter layer or ash and soil in addition to atmospheric inputs were sufficient to provide most nutrients required to maintain similar growth rates across all treatments. This demonstrated the importance of residue derived nutrients to early growth nutrient supply. Reduced N mineralisation through a lack of substrate may limit N supply later in the rotation where residue had been removed. Construction of a nutrient budget for the system revealed that high levels of atmospheric inputs have the potential to partially replenish a large proportion N, K, and Ca lost during clearfelling, provided losses are constrained to stemwood removal only. However, loss of Mg that occurred primarily through leaching may not be replaced under the low Mg inputs recorded in this study. Larger nutrient removals (i.e. stemwood plus other plant parts) placed a heavier reliance on the small soil nutrient pools at this site which can limit future productivity. More intense harvesting and residue management practices dramatically increased the risk of nutrient depletion. Losses of specific nutrients depended on a combination of clearfelling biomass removal, residue burning and subsequent leaching. Nitrogen losses due to harvesting and burning were more substantial than those due to leaching. Mg and K losses depended most strongly on the time after clearfelling before re-establishment of the new crop and rainfall patterns, while Ca and P losses depended directly on the amount of biomass removed. Depletion risk was the greatest for Mg and K through rapid leaching, even after stem wood only removal. Deep root uptake and deep drainage with associated cation loss needs to be investigated further to quantify ecosystem losses and recovery of cations displaced beyond 1m. Atmospheric deposition is one of major factors countering nutrient losses. However, atmospheric inputs may not be reliable as these may lessen in future through pollution control legislation and climate change. Changes in growth rate under poor nutrient management practices are small and difficult to detect relative to the large impacts of changing weather patterns (drought), wildfire and pest and disease. This makes it difficult to prove nutrient related growth decline. It may be possible that improvements in genetics, silvicultural technologies and atmospheric inputs may also be masking site decline (in general) and in part explain the lack of evidence of a growth reduction in the region. As the poorly buffered sandy soils on the Zululand Coast are at risk of nutrient depletion under the short rotation, high productivity stands, it may be necessary to stipulate more conservative harvesting and residue management practices. A more conservative stem-wood only harvesting regime is recommended, retaining all residues on site. Residue burning should be avoided if N losses become a concern. The length of the inter-rotation period must be kept short to reduce cation leaching losses. Site nutrient pools need to be monitored and cations may eventually need to be replenished through application of fertilisers or ash residues from pulp mills. Management practices therefore need to be chosen based on the specific high risk nutrients in order to maintain a sustainable nutrient supply to current and future plantation grown Eucalyptus.

Page generated in 0.1047 seconds