• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils

Kothawala, Dolly N. January 2009 (has links)
Note: / The soil-solution partitioning of dissolved organic carbon (DOC) withinmineral soil horizons is primarily controlled by processes of adsorption and desorption. These abiotic processes largely occur within a short equilibration time of seconds to minutes, which generally occur faster than microbial processes. To characterise the adsorption of DOC to mineral soils, I used the Langmuir adsorption isotherm, which holds several advantages to the commonly used linear initial mass (IM) isotherm. One advantage to using the Langmuir isotherm is anestimation of the maximum DOC adsorption capacity (Qmax). The Qmax estimates the number of remaining DOC binding sites available on the mineral soil particle surfaces. I modified the traditional Langmuir isotherm in order to estimate the DOC desorption potential of native soil organic matter (SOC).[...] / Le partitionnement entre les solutions de sols du carbone organiquedissous (COD) dans les horizons des sols minéraux est essentiellement contrôle par les processus d'adsorption et de désorption. Ces processus abiotiques se déroulent normalement dans un bref temps d'équilibration variant de quelques secondes a quelques minutes, ce qui est en général plus rapide que les processus microbiens. Pour caractériser Fadsorption de COD aux sols minéraux, nous avons utilise l'isotherme d'adsorption de Langmuir. Cette isotherme présente plusieurs avantages par rapport a Fisotherme de masses initiales (IM) linéaires couramment utilisée, en particulier F estimation de la capacité d'adsorption maximale du COD (Qmax). Le Qmax estime le nombre de sites de liaison de COD restants a la surface du sol minéral. Nous avons aussi modifie Fisotherme de Langmuir traditionnelle afin d'évaluer le potentiel de désorption de COD de la matière organique du sol indigène (MOS).[...]
2

Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils

Kothawala, Dolly N., 1972- January 2009 (has links)
The soil-solution partitioning of dissolved organic carbon (DOC) within mineral soil horizons is primarily controlled by processes of adsorption and desorption. These abiotic processes largely occur within a short equilibration time of seconds to minutes, which generally occur faster than microbial processes. To characterise the adsorption of DOC to mineral soils, I used the Langmuir adsorption isotherm, which holds several advantages to the commonly used linear initial mass (IM) isotherm. One advantage to using the Langmuir isotherm is an estimation of the maximum DOC adsorption capacity (Qmax). The Qmax estimates the number of remaining DOC binding sites available on the mineral soil particle surfaces. I modified the traditional Langmuir isotherm in order to estimate the DOC desorption potential of native soil organic matter (SOC). / Sorption characteristics were derived for a broad range of52 mineral soils collected from 17 soil profiles spanning across Canada from British Columbia to Quebec. Mineral horizons with the greatest Qmax included the Fe-enriched B horizons of acidic Podzols and Volcanic soils, followed by B horizons not enriched in Fe, followed by A and C horizons. Podzol B horizons were distinct from all other horizons due to significantly higher desorption potential. Soil properties predicting the adsorption characteristics of DOC also predicted the adsorption characteristics of dissolved organic nitrogen (DON). Adsorption of DOC and DON was tightly coupled (R 2 = 0.86), however the ratio of DOC:DON in the final equilibrium solution lowered for 48 out of 52 minerals horizons. These results suggest that DON may be slightly more mobile than DOC. / A short-term (32 day) incubation was perform to establish the fate of indigenous soil C, relative to newly adsorbed soil C to four mineral soils with different adsorption characteristics. Soil columns were leached periodically and sampled for DOC and CO2 production. Two Fe-enriched mineral horizons with high adsorption capacity released low amounts of old SOC, yet released almost all of the newly adsorbed SOC. In contrast, two B horizons without Fe-enrichment released greater amounts of old SOC, and retained a greater fraction of the newly adsorbed SOC than the Fe-enriched horizons. These results identify a contrast between the fate of indigenous and newly adsorbed SOC on mineral soils with differing Qmax. / The final component of this study examined changes to the molecular structure of DOC after equilibration with mineral soils. Multiple techniques were used to assess changes in the molecular composition of DOC, including the analysis of aromatic content by specific UV absorbance (SUVA) and fluorescence spectroscopy, analysis of molecular weight distribution (MWD) with high performance size exclusion chromatography (HPSEC) and functional group analysis with Fourier transform infra-red spectroscopy (FTIR). The solution phase DOC generally showed a reduced aromatic content, along with the removal of organic compounds with carboxyl groups. The MWD of DOC was reduced after equilibration to mineral soils, and the reduction in average molecular weight was related to the Qmax of mineral soils. / The various components of this thesis have contributed to the overall understanding of controls on the adsorption of DOC and DON species to mineral soils of the Canadian temperate and boreal forest.
3

Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils

Kothawala, Dolly N., 1972- January 2009 (has links)
No description available.
4

Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils

Kothawala, Dolly N. January 2009 (has links)
Note:
5

The partitioning of Cd, Cu, Pb and Zn between the solid and solution phase of forest floor horizons in podzolic soils near metal smelters /

MacDonald, James Douglas January 2005 (has links)
The emission of trace metals (TMs) into boreal forest regions of the northern hemisphere is an important environmental issue due to their potential detrimental impacts on these sensitive ecosystems. One of the foremost factors controlling metal cycling is the chemistry of the overlying organic forest floor of the forest soil. In this thesis we examine the chemistry of forest floor horizons of podzolic soils. Our goal is to improve our ability to predict the partitioning of metals between the soil solid and solution phases. / We developed a standard protocol to produce solutions that resemble lysimeter solutions from podzolic soils using air-dried samples. We hypothesized that the stabilization point of the electrical conductivity (EC) of the soil solution is indicative of the point in which soluble salts and organic material precipitated during sampling and storage are removed from the soil particle surfaces. Solutions produced by leaching the soils, once the EC of wash solutions had stabilized, were comparable to lysimeter solutions from the area where samples were collected with respect to the concentrations of divalent cations, pH, EC and dissolved organic carbon (DOC). The applicability of this procedure to trace metal partitioning in forest floors was explored. Laboratory extractions produced partition coefficients (log Kd) similar to observed lysimeter solutions ranging from 3.4 to 3.9 for Cd, 3.4 to 3.9 for Cu, 3.4 to 4.1 for Ni, 4.1 to 5.2 for Pb and 3.2 to 3.5 for Zn. According to a semi-mechanistic regression model based on observed lysimeter concentrations, the metal concentrations in solution were appropriate relative to known factors that influence metal partitioning in soils: pH, the concentrations of total metals and DOC. / While chemical characteristics of soils have been consistently observed to play important roles in the partitioning and toxicity of metals we wished to place the importance of the chemical characteristics of soil on mobility and toxicity in context. We interpreted field data that had been collected from transects established with distance from two point source emitters in Rouyn PQ, and Sudbury ON. Canada find developed equations that predict dissolved metal concentrations from total metal concentrations, soil pH, soil organic matter (SOM), and DOC contents. We integrated these equations into a simple box model that calculates changes in the concentration of metals in the organic and upper mineral horizons and includes a loop for vegetative return of metals to the forest floor.
6

The partitioning of Cd, Cu, Pb and Zn between the solid and solution phase of forest floor horizons in podzolic soils near metal smelters /

MacDonald, James Douglas January 2005 (has links)
No description available.

Page generated in 0.0723 seconds