• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantifying the Fuel Load, Fuel Structure and Fire Behaviour of Forested Bogs and Blowdown

Johnston, Daniel C. 21 March 2012 (has links)
A study was undertaken to characterize two dynamic fuel types not included in the Canadian Forest Fire Behaviour Prediction System: forested bogs and blowdown. Fuel load and structure were measured at ten forested bog sites in central Alberta along a 108 year post-fire chronosequence. Canopy bulk density increased following a sigmoidal curve between 0.00 and 0.54 kg•m-3. Crown fire potential was modeled using a general crown fire behaviour model and found to follow a similar sigmoidal pattern increasing with time-since-fire. Blowdown fuel loads were measured at six sites in northwestern Ontario and ranged from 13.4 to 18.9 kg•m-2. Elevated fine blowdown fuels were found to have faster reaction times and dry more rapidly than predicted by the Fine Fuel Moisture Code. Detailed observations were also made of fire behaviour in blowdown fuels
2

Quantifying the Fuel Load, Fuel Structure and Fire Behaviour of Forested Bogs and Blowdown

Johnston, Daniel C. 21 March 2012 (has links)
A study was undertaken to characterize two dynamic fuel types not included in the Canadian Forest Fire Behaviour Prediction System: forested bogs and blowdown. Fuel load and structure were measured at ten forested bog sites in central Alberta along a 108 year post-fire chronosequence. Canopy bulk density increased following a sigmoidal curve between 0.00 and 0.54 kg•m-3. Crown fire potential was modeled using a general crown fire behaviour model and found to follow a similar sigmoidal pattern increasing with time-since-fire. Blowdown fuel loads were measured at six sites in northwestern Ontario and ranged from 13.4 to 18.9 kg•m-2. Elevated fine blowdown fuels were found to have faster reaction times and dry more rapidly than predicted by the Fine Fuel Moisture Code. Detailed observations were also made of fire behaviour in blowdown fuels

Page generated in 0.0476 seconds