• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of time from treatment to disturbance on woody plant control with triclopyr, picloram and/or 2,4-D

Burch, Patrick L. January 1985 (has links)
Two studies were designed to test three herbicides and factors which influence their efficacy. In the first study four chemical combinations used for site preparation in southern pine, including triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid), trichloropicolinic acid), dichlorophenoxy)acetic acid] picloram (4-amino-3,5,6- and 2,4-D [(2,4- were screened for the most effective control of selected hardwoods. The chemical combinations were tested on Piedmont and Coastal Plain physiographic sites and were examined for the optimum amount of time for chemical activity between application and slash disposal (site disturbance). Efforts were also made to use target-plant and environmental data to predict chemical efficacy. A combination of triclopyr and picloram at 2 and 1 lb ai/ac, respectively, each gave the best overall control of hardwood brush. The amount of time required to obtain the optimum chemical control, presumably related to translocation, was found to be six to eight weeks after application to the foliage. Chestnut oak (Quercus prinus L.) control was successfully predicted on the bases of plant tissue and environmental data. In a second study the effect of temperature and time on the distribution of foliar-applied triclopyr, picloram, and 2,4-D were observed in red maple (Acer rubrum L.). Detection of the herbicides in the stems and roots using gas chromatography revealed that triclopyr was less affected by temperature differences; however, overall more herbicide reached the roots of red maple growing in a 21° C than those growing in a 29° C temperature. Triclopyr concentrations in the roots reached a peak much earlier than picloram or 2,4-D which did not peak until 42 days after application. / M.S.
2

An investigation into using textural analysis and change detection techniques on medium and high spatial resolution imagery for monitoring plantation forestry operations.

Norris-Rogers, Mark. January 2006 (has links)
Plantation forestry involves the management of man-made industrial forests for the purpose of producing raw materials for the pulp and paper, saw milling and other related wood products industries. Management of these forests is based on the cycle of planting, tending and felling of forest stands such that a sustainable operation is maintained. The monitoring and reporting of these forestry operations is critical to the successful management of the forestry industry. The aim of this study was to test whether the forestry operations of clear-felling, re-establishment and weed control could be qualitatively and quantitatively monitored through the application of classification and change detection techniques to multi-temporal medium (15-30 m) and a combination of textural analysis and change detection techniques on high resolution (0.6-2.4 m) satellite imagery. For the medium resolution imagery, four Landsat 7 multi-spectral images covering the period from March 2002 to April 2003 were obtained over the midlands of KwaZulu-Natal, South Africa, and a supervised classification, based on the Maximum Likelihood classifier, as well as two unsupervised classification routines were applied to each of these images. The supervised classification routine used 12 classes identified from ground-truthing data, while the unsupervised classification was done using 10 and 4 classes. NDVI was also calculated and used to estimate vegetation status. Three change detection techniques were applied to the unsupervised classification images, in order to determine where clear-felling, planting and weed control operations had occurred. An Assisted "Classified" Image change detection technique was applied to the Ten-Class Unsupervised Classification images, while an Assisted "Quantified Classified" change detection technique was applied to the Four-Class Unsupervised Classification images. An Image differencing technique was applied to the NDVI images. For the high resolution imagery, a series of QuickBird images of a plantation forestry site were used and a combination of textural analysis and change detection techniques was tested to quantify weed development in replanted forest stands less than 24 months old. This was achieved by doing an unsupervised classification on the multi-spectral bands, and an edge-enhancement on the panchromatic band. Both the resultant datasets were then vectorised, unioned and a matrix derived to determine areas of high weed. It was found that clear-felling operations could be identified with accuracy in excess of 95%. However, using medium resolution imagery, newly planted areas and the weed status of forest stands were not definitively identified as the spatial resolution was too coarse to separate weed growth from tree stands. Planted stands younger than one year tended to be classified in the same class as bare ground or ground covered with dead branches and leaves, even if weeds were present. Stands older than one year tended to be classified together in the same class as weedy stands, even where weeds were not present. The NDVI results indicated that further research into this aspect could provide more useful information regarding the identification of weed status in forest stands. Using the multi-spectral bands of the high resolution imagery it was possible to identify areas of strong vegetation, while crop rows were identifiable on the panchromatic band. By combining these two attributes, areas of high weed growth could be identified. By applying a post-classification change detection technique on the high weed growth classes, it was possible to identify and quantify areas of weed increase or decrease between consecutive images. A theoretical canopy model was also derived to test whether it could identify thresholds from which weed infestations could be determined. The conclusions of this study indicated that medium resolution imagery was successful in accurately identifying clear-felled stands, but the high resolution imagery was required to identify replanted stands, and the weed status of those stands. However, in addition to identifying the status of these stands, it was also possible to quantify the level of weed infestation. Only wattle (Acacia mearnsii) stands were tested in this manner but it was recommended that in addition to applying these procedures to wattle stands, they also are tested in Eucalyptus and Pinus stands. The combination of textural analysis on the panchromatic band and classification of multi-spectral bands was found to be a suitable process to achieve the aims of this study, and as such were recommended as standard procedures that could be applied in an operational plantation forest monitoring environment. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.

Page generated in 0.1029 seconds