• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desarrollo experimental y modelado computacional multiescala de la curva límite de formabilidad : aplicación a un acero dual-phase de alta resistencia

Schwindt, Claudio Daniel 28 December 2015 (has links)
El interés industrial por la formabilidad de chapas de aceros de doble fase (DP) se ha incrementado en las últimas décadas, impulsado principalmente por la reciente popularidad de los aceros avanzados de alta resistencia (AHSS) para reducir el peso de partes automotrices. Esto resulta en una fuerte necesidad de determinar la respuesta límite del material frente a solicitaciones típicas de operaciones de conformado y el estudio de los factores que la influencian. La presente Tesis Doctoral aborda el estudio numérico de los factores microestructurales que influyen en el diagrama límite de conformado (FLD) de chapas de acero DP-780. El comportamiento límite del material se modela mediante la técnica de Marciniak-Kuczynski (MK), la cual asume la presencia de una imperfección inicial precursora del proceso de localización; mientras que la descripción constitutiva del material se realiza en el marco de la plasticidad cristalina. El comportamiento anisótropo, la presencia de una distribución preferencial de orientaciones y el efecto de las fases constituyentes – ferrita/martensita – se obtiene mediante una homogeneización autoconsistente de la respuesta viscoplástica a nivel del cristal simple (VPSC). El acople de ambas técnicas (MK-VPSC) permite modelar exitosamente la respuesta límite de las chapas de acero DP-780. Se investiga numéricamente el efecto de parámetros microestructurales típicos de aceros DP, la influencia de la anisotropía y su evolución, así como el efecto del comportamiento del endurecimiento post-estricción en las deformaciones límite. Tanto la fracción en volumen como la plasticidad de la martensita presentan una influencia significativa en la predicción del diagrama FLD, mientras que la evolución de la textura cristalográfica sólo afecta las deformaciones límite bajo solicitaciones biaxiales. El mejor acuerdo con los datos experimentales se encuentra cuando se utiliza una ley de endurecimiento de saturación y cuando la deformación de la martensita es impedida o es retardada hasta el punto de estricción. Un análisis de la actividad de los sistemas de deslizamiento sugiere que, dentro del marco de trabajo del modelo MK-VPSC, la localización ocurre mucho más rápido en la ferrita que en la martensita. Se presenta una extensión del modelo MK-VPSC que permite evitar problemas de convergencia y reducir el costo computacional. Esto se alcanza aplicando directamente las condiciones en velocidad de deformación y tensión, resultantes de las restricciones de equilibrio y compatibilidad, en la banda de inestabilidad del modelo MK. Además, los estados mecánicos dentro y fuera de ésta se resuelven en el marco de referencia de la muestra, evitando rotar las orientaciones cristalográficas y las variables internas a la orientación de la banda para cada incremento, mejorando la eficiencia computacional. Las condiciones de borde generalizadas incorporadas al modelo permiten calcular diagramas FLD basados en trayectorias de carga en deformación (FLDρ) como en tensión (FLDα). / Triggered by the recent popularity of advanced high strength steels (AHSS) for weight-reduction in automotive components, industrial interest in the formability of dual-phase (DP) steel sheets has increased in the last decades. Thus, there is a strong need in the determination of the material’s limit behavior for typical loading conditions in sheet forming operations, as well as the analysis of the influencing factors. This thesis addresses the numerical study of microstructural factors influencing the forming limit diagram (FLD) of DP-780 steel sheets. The material’s limit behavior is modeled by the Marciniak-Kuczynski (MK) model, which assumes an initial imperfection, precursor of the localization process; whereas the material’s constitutive description is performed within the crystal plasticity framework. The anisotropic behavior, the presence of preferred orientation distributions and the effect of the constituent phases – ferrite/martensite – is obtained by a self-consistent homogenization of the single crystal viscoplastic response (VPSC). The coupled techniques (MK-VPSC) can successfully model the limit response of the DP-780 steel sheet. The effect of typical microstructural parameters of DP steels, the influence of anisotropy and its evolution with deformation, as well as the extrapolated post-necking hardening behavior, on the forming limits is numerically investigated. Both the martensitic volume fraction and plasticity have a significant influence on the FLD prediction, while the evolution of crystallographic texture only affects the limit strains under biaxial deformation. The best agreement with experimentation is found when using the saturation hardening law and when the martensite deformation is either not allowed or retarded to occur after the point of necking. An analysis of the slip systems activity suggests that, within the MK-VPSC framework, localization occurs much faster in the ferritic than in the martensitic phase. An extension to the MK-VPSC model is presented in this thesis in order to avoid convergence problems and reduce the computational cost. This is achieved by directly applying the stress and strain-rate boundary conditions, resulting from the equilibrium and compatibility restrictions, at the MK instability band. Moreover, the mechanical states outside and inside the groove are solved in the sample reference frame. This avoids rotating the crystallographic orientations and the internal variables to the current groove orientation for each increment, improving the computational performance. The generalized boundary conditions in the polycrystal model allow calculating either strain ratio (FLDρ) or stress ratio (FLDα) based FLDs.
2

Desarrollo de la modelización multiescala en agregados policristalinos HCP bajo solicitación mecánica inducida en curso de procesos de conformado : validación experimental en chapas de zinc texturado

Schlosser, Fernando 20 September 2018 (has links)
Las chapas de zinc se caracterizan por tener muy buena maleabilidad y flexibilidad en combinación con una gran terminación superficial, lo que las hace ser ampliamente utilizadas en la industria arquitectónica en partes como techos, revestimientos, canaletas, entre otras, y además son aptas para sitios con climas adversos. Estas propiedades se logran debido a que el zinc es naturalmente resistente a la corrosión, muy duradero y requiere bajo mantenimiento. Es la adición de cobre y titanio como aleantes lo que conduce a un material con óptimas características mecánicas y físicas, principalmente en cuanto a resistencia mecánica y creep, cualidades muy apreciadas para aplicaciones en la construcción. Las chapas son producidas por colada continua seguida por laminado desde unas dimensiones iniciales de 1 m de ancho y 10 a 20 mm de espesor hasta las dimensiones finales deseadas. La presente tesis doctoral aborda el estudio numérico y experimental de la formabilidad de chapas de zinc texturado. El diagrama límite de conformado del material se determina experimentalmente mediante ensayos de laboratorio y sus resultados son predichos mediante un modelado en dos escalas. El comportamiento anisótropo del material, producto de la textura cristalográfica y la microestructura se obtiene a través de un modelo viscoplástico autoconsistente de plasticidad policristalino de base micromecánica. En conjunción con un criterio de inestabilidad plástica de Marciniak-Kuczynski, fundado en la presencia de una imperfección inicial en el material, se modeliza el comportamiento límite de zinc bajo solicitaciones de tipo tracción-compresión, deformación plana y expansión biaxial en el plano de la chapa. El carácter altamente anisótropo de la formabilidad del material es cualitativamente predicho por la modelización. Se extiende el análisis mediante el diagrama límite de conformado, el cual abarca caminos de deformación lineales, basado en expansión biaxial equilibrada seguido de una tracción uniaxial, encontrando un incremento significante de la deformación límite del material, y una menor sensibilidad a la desorientación inicial de los ejes de anisotropía y los ejes principales de la solicitación. Un énfasis especial adquiere la anisotropía exhibida por el material, producto de la textura cristalográfica y la microestructura. Se investiga la textura inducida mediante diversos procesos típicos de conformado mediante técnicas experimentales, contrastando los resultados con la predicción del modelo policristalino. El buen acuerdo cualitativo entre los experimentos y las predicciones del modelo indica que la base física del modelo es acorde para este material. Se estudia el desarrollo de la localización en ensayos de tracción uniaxial mediante el seguimiento in-situ del campo de deformaciones sobre el plano de la chapa, y a través de cartografías mediante difracción de electrones retrodifundidos de muestras deformadas. El desarrollo de un campo heterogéneo de deformaciones se hace evidente desde etapas tempranas de los ensayos, y generalmente antes del máximo en las curvas de carga. La localización de la deformación se caracteriza por el desarrollo de múltiples bandas, y una estricción final única. / Zinc sheets are characterized by their good malleability and flexibility combined with an excellent surface aspect. They are greatly used in the building industry as part of facades, roofing, rainwater systems and accessories, independently of the weather conditions. They are widely chosen for this type of uses because it is a naturally corrosion resistant, durable and low cost maintenance material. When alloyed with copper and titanium, mechanical and physical properties as mechanical strength and creep resistance are optimal for their use in the building industry. Sheets are produced by continuous casting followed by rolling from slabs 1 m wide and 10 to 20 mm thick to the required dimensions of the sheet. This thesis addresses the numerical and experimental study of the formability of textured zinc sheets. The forming limit diagram of the material is experimentally determined by means of laboratory tests and their results are predicted by a two scale model. On one side, the anisotropic behavior of the material, as a consequence of crystallographic texture and microstructure, is reproduced with a micromechanically based polycrystalline model, called viscoplastic self-consistent. On the other side, the limit strains of the zinc sheets are predicted for tension-compression, plane strain and biaxial expansion deformation conditions, with the help of the Marciniak-Kuczynski plastic instability criterion, which assumes the pre-existence of an initial materials’ imperfection that leads to localized necking. The high anisotropy exhibited by the material is qualitatively predicted by the model. The forming limit diagram analysis, which involves linear strain paths, is extended for a strain path involving equibiaxial expansion followed by uniaxial tension, finding a significant increase in the limit strains of the material and less sensibility to the initial angle between anisotropy and principal strains axes. A notorious emphasis is set on the anisotropy shown by the material, especially in terms of crystallographic texture and microstructure evolution. The texture induced by different typical forming operations is investigated through experimental techniques, and their results are compared to those predicted by the polycrystal model. The good qualitative agreement between experimental and theoretical results is an indicator that the physical basis of the polycrystal model is well suited for this material. The development of strain localization on uniaxial tension tests is studied by means of an in-situ following of the strain fields in the plane of the sheet, aided by electron backscatter diffraction measurements of deformed samples. The development of a heterogeneous field of strain distribution is evident from early stages of the tests, and is generally observed before the maximum of the true stress-true strain curve is reached. Strain localization is characterized by the development of multiple bands of localized strain, with one of them finally necking.

Page generated in 0.0526 seconds