• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude structurale et fonctionnelle de la reconnaissance et de la métabolisation de lésions puriques et pyrimidiques dans l'ADN par la Formamidopyrimidine-ADN glycosylase / Structural and functional study of the recognition and metabolization of puric and pyrimidic DNA lesions by the Formamidopyrimidine-DNA glycosylase

Le Bihan, Yann-Vaï 11 May 2009 (has links)
Les oxydations sur les bases nucléiques constituent l’une des sources principale d’apparition de lésions sur l’ADN, qui peuvent être mutagènes ou létales pour les cellules en l’absence de réparation de l’ADN. La Formamidopyrimidine-ADN glycosylase (Fpg), une enzyme procaryote du système de réparation de l’ADN par excision de base (BER), initie la réparation d’un large panel de lésions de ce type via ses activités ADN glycosylase (excision de la base oxydée) et AP lyase (clivage du site abasique par ß,d-élimination). Nous avons réalisé des études fonctionnelles par des techniques biochimiques et structurales par cristallographie des rayons X afin de préciser la spécificité de substrat et le mécanisme catalytique de Fpg. Ainsi, nous avons pu mettre en évidence des déterminants structuraux permettant à cette enzyme d’accommoder des lésions de tailles très différentes dans son site actif, en l’occurrence des résidus 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) substitués ou non en N7 par des adduits encombrants. D’autre part, nous avons caractérisé structuralement et fonctionnellement la reconnaissance et l’excision par Fpg d’une lésion pyrimidique, la 5-hydroxy-5-méthyle-hydantoïne (Hyd). Ainsi, nous avons montré que cette lésion appariée à une cytosine était un bon substrat pour l’enzyme, et nous avons précisé structuralement le mode de reconnaissance de l’Hyd par Fpg. D’autre part, nous avons mis en évidence un comportement inattendu de l’enzyme sur ce substrat. En l’occurrence, nous avons montré biochimiquement et structuralement qu’un pontage covalent se formait en quantités non négligeables entre Fpg et l’Hyd dans des conditions physiologiques. / Oxidations on nucleic bases constitute one of the major sources of DNA lesions appearance, which can be mutagenic or lethal for cells in the absence of DNA repair. The prokaryotic Formamidopyrimidine-DNA glycosylase (Fpg), a base excision DNA repair (BER) enzyme, initiate the repair of a wide range of such lesions via its DNA glycosylase (excision of the oxidized base) and AP lyase (cleavage of the AP site by ß,d-elimination) activities. We carried out functional studies by biochemical techniques and structural studies by X-ray crystallography so as to state Fpg’s substrate specificity and catalytic mechanism. Thus, we have been able to underline the structural determinants enabling this enzyme to accommodate lesions of very different sizes in its active site, in this case 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) residues N7-substituted or not by bulky adducts. On the other hand, we structurally and functionally characterized the recognition and excision by Fpg of a pyrimidic lesion, the 5-hydroxy-5-methyl-hydantoin (Hyd). Thus, we have shown that this lesion paired with a cytosine was a good substrate for the enzyme, and stated structurally the recognition mode of Hyd by Fpg. On the other hand, we have underlined an unexpected behaviour of the enzyme on this substrate. In this case, we have biochemically and structurally shown that a covalent link was formed in sizeable quantities between Fpg and Hyd in physiological conditions.
2

DNA damage and repair in nail technicians caused by occupational exposure to volatile organic compounds / N. van der Merwe

Van der Merwe, Nicolene January 2010 (has links)
Objectives: The aim of this study was to determine if exposure to volatile organic compounds can lead to DNA damage and impaired DNA repair capacity. Nail cosmetics is a fast growing industry around the world where employees and clients are subjected to various chemical substances which may be harmful to their health: such as formaldehyde, toluene, acetone, xylene, ethylmethacrylate, methylmethacrylate and n–buthyl acetate. These chemicals have the potential to be harmful to their health and exposure to these chemicals should be actively controlled. Formaldehyde is classified as a human carcinogen by the IARC, whereas, toluene and xylene are group three carcinogens, classified in 1999 (not classified as carcinogenic to humans), and various studies have linked DNA damage and impaired DNA repair to the above mentioned substances. Methods: Fifteen nail technicians were monitored by means of personal air sampling, measuring formaldehyde, toluene, xylene, acetone and ethylmethacrylate exposure. Fifteen unexposed subjects were chosen and matched for age and smoking habits with the exposed group. Heparinised blood samples were obtained from each test subject with which the Comet Assay was performed on lymphocytes to determine DNA damage and repair ability. Results: Exposure to ethylmethacrylates and methylmethacrylates leads to DNA damage. Methylmethacrylate causes DNA damage by specifically targeting pyrimidine (fpg) bases. N–buthyl acetate, xylene and acetone exposure impaired DNA repair capacity. The exposed group showed signs of Class III and Class IV DNA damage, whereas the control group had little Class III damage and no indication of Class IV damage. The overall DNA repair ability of the nail technicians was slightly impaired when compared to that of the control group, which is in concurrence with previous studies. Smoking habits and age did not show significant influences on the level of DNA damage and repair when compared with the control group. Conclusion: Exposure to volatile organic compounds such as ethylmethacryale and methylmethacrylate may lead to DNA damage and altered DNA repair in some individuals, although further studies are recommended. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.
3

DNA damage and repair in nail technicians caused by occupational exposure to volatile organic compounds / N. van der Merwe

Van der Merwe, Nicolene January 2010 (has links)
Objectives: The aim of this study was to determine if exposure to volatile organic compounds can lead to DNA damage and impaired DNA repair capacity. Nail cosmetics is a fast growing industry around the world where employees and clients are subjected to various chemical substances which may be harmful to their health: such as formaldehyde, toluene, acetone, xylene, ethylmethacrylate, methylmethacrylate and n–buthyl acetate. These chemicals have the potential to be harmful to their health and exposure to these chemicals should be actively controlled. Formaldehyde is classified as a human carcinogen by the IARC, whereas, toluene and xylene are group three carcinogens, classified in 1999 (not classified as carcinogenic to humans), and various studies have linked DNA damage and impaired DNA repair to the above mentioned substances. Methods: Fifteen nail technicians were monitored by means of personal air sampling, measuring formaldehyde, toluene, xylene, acetone and ethylmethacrylate exposure. Fifteen unexposed subjects were chosen and matched for age and smoking habits with the exposed group. Heparinised blood samples were obtained from each test subject with which the Comet Assay was performed on lymphocytes to determine DNA damage and repair ability. Results: Exposure to ethylmethacrylates and methylmethacrylates leads to DNA damage. Methylmethacrylate causes DNA damage by specifically targeting pyrimidine (fpg) bases. N–buthyl acetate, xylene and acetone exposure impaired DNA repair capacity. The exposed group showed signs of Class III and Class IV DNA damage, whereas the control group had little Class III damage and no indication of Class IV damage. The overall DNA repair ability of the nail technicians was slightly impaired when compared to that of the control group, which is in concurrence with previous studies. Smoking habits and age did not show significant influences on the level of DNA damage and repair when compared with the control group. Conclusion: Exposure to volatile organic compounds such as ethylmethacryale and methylmethacrylate may lead to DNA damage and altered DNA repair in some individuals, although further studies are recommended. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.0595 seconds