• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'analyse d'électrogrammes unipolaires multiples recueillis à l'épicarde auriculaire

Corbeil-Létourneau, Simon January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Les Modulations à Phase Continue pour la Conception d'une Forme d'Onde Adaptative Application aux Futurs Systèmes Multimédia par Satellite en Bande Ka

Chaggara, Ridha 12 1900 (has links) (PDF)
Dans le cadre de cette thèse nous nous intéressons à la liaison d'un terminal utilisateur vers un satellite géostationnaire pour les futurs systèmes d'applications multimédia en bande Ka. Le but est de concevoir une forme d'onde qui permet de s'adapter aux conditions de propagation. L'adaptation des performances en spectre et en puissance de la forme d'onde, notamment dans un contexte avec une forte fluctuation du niveau du signal, comme celui du canal satellite en bande Ka, permet à la fois d'augmenter la capacité et d'améliorer la disponibilité du système. Dans ces travaux, les formes d'onde basées sur les modulations CPM (Continuous Phase Modulation) ont été adoptées. L'enveloppe constante, les différents paramètres ayant un impact sur les performances de la forme d'onde, ainsi que les bonnes performances en puissance lors d'un processus de décodage itératif sont les principales motivations de notre choix. Concernant l'adaptativité nous montrons qu'une forme d'onde CPM basée sur la variation de l'indice de modulation (et éventuellement la réponse en fréquence) au sein d'une famille d'indices ayant un même dénominateur est une solution particulièrement attractive. Une telle solution ne nécessite pas une très grande complexité lors d'un passage d'un mode de transmission à un autre. Elle nécessite essentiellement le changement des coefficients des filtres adaptés. Cette technique permet aussi d'obtenir une marge de performance assez importante vu que l'indice de modulation est le paramètre qui affecte le plus les performances de la CPM. La CPM octale 2RC est un schéma particulièrement attractif d'un point de vue performance.
3

Efficient 1D, 2D and 3D Geostatistical constraints and their application to Full Waveform Inversion / Préconditionnement géostatistique 1D, 2D et 3D et leurs applications à l'inversion de forme d'onde complète

Wellington, Paul John 22 September 2016 (has links)
L'inversion de forme d'onde complète (FWI) est un processus non-linéaire et mal posé d’ajustement de données, dans notre cas, issues d’acquisitions simiques. Cette technique cherche à reconstruire, à partir d’un modèle initial obtenu à faible nombre d’onde (faible résolution), des paramètres constitutifs contrôlant la propagation des ondes à grands nombres d’ondes (forte résolution). Durant ce processus itératif, certains artéfacts peuvent altérer la qualité du modèle reconstruit. Afin de diminuer ces artéfacts et d’assurer une reconstruction des paramètres qui soit cohérente d’un point de vue géologique, différentes techniques de pré-conditionnement ou de régularisation peuvent être proposées.Cette thèse se focalise sur le potentiel de nouveaux filtres multi-dimensionnels construits dans l’espace des nombres d’ondes et orientés suivant les structures géologiques. Une stratégie de pré-conditionnement a été mise au point à l’aide de ces filtres et a été appliquée avec succès à la problématique FWI. La formulation analytique 1D de l’opérateur inverse de covariance laplacienne (Tarantola, 2005) constitue la base de la formulation d’opérateurs de dimension supérieure qui sont validés ici en les comparants avec l’opérateur analytique de covariance laplacienne 1D. Nous avons utilisé cette fonction analytique inverse 1D comme la base de filtrage de dimension supérieure, via l’addition de multiples fonctions inverses orientées orthogonalement. Ces fonctions laplaciennes inverses additionnelles (AIL) sont obtenues pour des configurations 2D et 3D après discrétisation par des techniques de différences finies. Nous montrons que l’on peut calculer un filtre en nombre d’onde de manière rapide et robuste en résolvant le système linéaire associé à ces opérateurs inverses. Lorsque des pentes sont inclues à l’étape de discrétisation par différences finies, il est alors possible d’utiliser ces opérateurs comme des filtres en nombre d’ondes orientés vers les structures géologiques, ceci avec une grande efficacité.Ce filtre (AIL) montre des propriétés rapides de convergence et des performances indépendantes du vecteur à filtrer. Nous montrons notamment comment ce filtre peut être utilisé comme un opérateur utile pour le gradient associé à la FWI. Le pré-conditionnement du gradient peut atténuer les effets du problème mal-posé qui vont s’étendre dans l’espace des modèles. Deux exemples synthétiques (Valhall et Marmousi) calculés dans l’espace des fréquences sont proposés dans cette thèse. Le pré-conditionnement AIL s’avère efficace pour atténuer d’une part la signature mal-posée provenant de la présence de bruit ambient dans les données observées et d’autre part d’artéfacts liés aux effets de repliement spatial liés aux conditions d’imagerie par FWI. La possibilité d’inclure des pentes permet de filtrer de manière préférentielle en considérant des pendages géologiques. Cette stratégie de filtrage permet l’atténuation d’artéfacts, tout en préservant le contenu en nombre d’ondes de la stratigraphie orthogonale au pendage.Un cas réel d’inversion 2D FWI est finalement abordé permettant tout d’abord d’illustrer la sensibilité des résultats d’inversion au modèle initial. Celui-ci est d’importance majeure, particulièrement dans les régions profondes dépassant la pénétration maximale des ondes transmises. L’application de la technique FWI à cette acquisition sismique a permis d’améliorer de manière significative la cohérence sur une image migrée par renversement du temps (RTM). Nous montrons également que le pré-conditionneur AIL permet une décroissance significative du nombre de tirs requis à modéliser dans la boucle d’inversion, sans pour autant dégrader le contenu en nombre d’onde des structures géologiques principales dans les résultats finaux obtenus après inversion. / Full waveform inversion (FWI) is a non-linear, ill-posed, local data fitting technique. FWI looks to moves from an initial, low-wavenumber representation of the earth parameters to a broadband representation. During this iterative process a number of undesirable artifacts can map into our model parameter reconstruction. To mitigate these artifacts and to ensure a geologically consistent model parameter reconstruction, various preconditioning and/or regularization strategies have been proposed.This thesis details the construction of new, efficient, multi-dimensional, structurally-orientated wavenumber filters. A preconditioning strategy has been devised using these filters that we have successfully applied to FWI. The 1D analytical inverse Laplacian covariance operator (Tarantola, 2005) forms the basis of higher dimensional operators and is initially validated by comparing to the 1D analytical Laplacian covariance operator. We use this analytical 1D inverse function as the basis for higher dimensional filtering via the addition of multiple, orthogonally orientated inverse functions. These additive inverse laplacian functions (AIL) are shown in 2D and 3D configurations and are discretized using finite-difference techniques. We show that one can calculate, a rapid and robust wavenumber filter, by solving the linear system associated with these inverse operators. When dip is included at the finite difference discretization stage, it is possible to use these operators as highly efficient, structurally orientated wavenumber filters.The AIL filter is shown to be rapid to converge and its performance is independent of the vector to be filtered. We show, that the filter can be a useful preconditioning operator for the FWI gradient. Preconditioning the gradient can mitigate against ill-posed effects mapping into the model-space. Two synthetic (Valhall and Marmousi) frequency domain FWI example are shown in this thesis. The AIL preconditioner has success at mitigating the ill-posed imprint coming from ambient noise in the observed data and also artifacts from spatial aliasing effects in the FWI imaging condition. The ability to include dip, allows one to preferentially filter along geological dip. This filtering strategy allows the mitigation of artifacts, while simultaneously preserving the stratigraphic based wavenumber content that is orthogonal to dip.A 2D, real data FWI case-study is also shown and we highlight the sensitivity of the inversion result to the initial model. The initial model is of key importance, this especially true in the areas deeper than the maximum penetration of transmitted waves. The application of FWI on this line is able to significantly improve gather alignment on a RTM, migrated image. We also see that the AIL preconditioner can allows us to significantly decrease the number of shot records we are required to model in our inversion workflow without degrading the key geological wavenumber content in the final inversion result.
4

OPTIMISATION ET CONCEPTION DE FORMES D'ONDE LPI POUR RADAR MONOSTATIQUE

Kassab, Rami 23 September 2009 (has links) (PDF)
L'un des traits les plus importants du radar moderne est la faible probabilité d'interception. Afin de garantir cette propriété, le radar doit étaler le plus possible son énergie en temps et en fréquence. Cependant, pour une configuration monostatique où la voie de réception est coupée pendant l'émission, l'étalement de l'énergie dans le temps entraîne une augmentation des pertes d'éclipses dégradant les performances radar pour les distances en question. D'autre part, la bande disponible est limitée, contrainte par des restrictions et parfois partagée avec d'autres applications. Ainsi, dans cette étude, la stratégie de transmission-réception est dans un premier temps optimisée afin de gérer les pertes d'éclipse et atteindre un bon rapport cyclique. Ensuite, une nouvelle technique simple et efficace est proposée permettant au radar d'adapter rapidement ses transmissions à un environnement spectral congestionné. Finalement, les formes d'onde résultantes ainsi que la technique de codage ont été testées en pratique dans le cadre de détection et de localisation d'avions en bande HF.
5

Contribution à la conception d'un système de radio impulsionnelle ultra large bande intelligent

Akbar, Rizwan 15 January 2013 (has links) (PDF)
Face à une demande sans cesse croissante de haut débit et d'adaptabilité des systèmes existants, qui à son tour se traduit par l'encombrement du spectre, le développement de nouvelles solutions dans le domaine des communications sans fil devient nécessaire afin de répondre aux exigences des applications émergentes. Parmi les innovations récentes dans ce domaine, l'ultra large bande (UWB) a suscité un vif intérêt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intéressante pour réaliser des systèmes UWB, est caractérisée par la transmission des impulsions de très courte durée, occupant une largeur de bande allant jusqu'à 7,5 GHz, avec une densité spectrale de puissance extrêmement faible. Cette largeur de bande importante permet de réaliser plusieurs fonctionnalités intéressantes, telles que l'implémentation à faible complexité et à coût réduit, la possibilité de se superposer aux systèmes à bande étroite, la diversité spatiale et la localisation très précise de l'ordre centimétrique, en raison de la résolution temporelle très fine.Dans cette thèse, nous examinons certains éléments clés dans la réalisation d'un système IR-UWB intelligent. Nous avons tout d'abord proposé le concept de radio UWB cognitive à partir des similarités existantes entre l'IR-UWB et la radio cognitive. Dans sa définition la plus simple, un tel système est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d'abord focalisé notre recherché sur l'analyse de la disponibilité des ressources spectrales (spectrum sensing) et la conception d'une forme d'onde UWB adaptative, considérées comme deux étapes importantes dans la réalisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et détecter rapidement les utilisateurs primaires. Nous avons donc développé de tels algorithmes utilisant des résultats récents sur la théorie des matrices aléatoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'échantillons. Ensuite, nous avons proposé une méthode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondération sont optimisés par des algorithmes génétiques. Il en résulte une forme d'onde UWB qui est spectralement efficace et peut s'adapter pour intégrer les contraintes liées à la radio cognitive. Dans la 2ème partie de cette thèse, nous nous sommes attaqués à deux autres problématiques importantes pour le fonctionnement des systèmes UWB, à savoir la synchronisation et l'estimation du canal UWB, qui est très dense en trajets multiples. Ainsi, nous avons proposé plusieurs algorithmes de synchronisation, de faible complexité et sans séquence d'apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalité des formes d'onde UWB ou la cyclostationnarité inhérente à la signalisation IR-UWB. Enfin, nous avons travaillé sur l'estimation du canal UWB, qui est un élément critique pour les récepteurs Rake cohérents. Ainsi, nous avons proposé une méthode d'estimation du canal basée sur une combinaison de deux approches complémentaires, le maximum de vraisemblance et la décomposition en sous-espaces orthogonaux,d'améliorer globalement les performances.
6

MIMO Radar Processing Methods for Anticipating and Preventing Real World Imperfections / Traitements radar MIMO pour prévenir et pallier les défauts du monde réel

Cattenoz, Mathieu 27 May 2015 (has links)
Le concept du radar MIMO est prometteur en raison des nombreux avantages qu'il apporte par rapport aux architectures radars actuelles : flexibilité pour la formation de faisceau à l'émission - large illumination de la scène et résolution fine après traitement - et allègement de la complexité des systèmes, via la réduction du nombre d'antennes et la possibilité de transférer des fonctions de contrôle et d'étalonnage du système dans le domaine numérique. Cependant, le radar MIMO reste au stade du concept théorique, avec une prise en compte insuffisante des impacts du manque d'orthogonalité des formes d'onde et des défauts matériels.Ce travail de thèse, dans son ambition de contribuer à ouvrir la voie vers le radar MIMO opérationnel, consiste à anticiper et compenser les défauts du monde réel par des traitements numériques. La première partie traite de l'élaboration des formes d'onde MIMO. Nous montrons que les codes de phase sont optimaux en termes de résolution spatiale. Nous présentons également leurs limites en termes d'apparition de lobes secondaires en sortie de filtre adapté. La seconde partie consiste à accepter les défauts intrinsèques des formes d'onde et proposer des traitements adaptés au modèle de signal permettant d'éliminer les lobes secondaires résiduels induits. Nous développons une extension de l'Orthogonal Matching Pursuit (OMP) qui satisfait les conditions opérationnelles, notamment par sa robustesse aux erreurs de localisation, sa faible complexité calculatoire et la non nécessité de données d'apprentissage. La troisième partie traite de la robustesse des traitements vis-à-vis des écarts au modèle de signal, et particulièrement la prévention et l'anticipation de ces phénomènes afin d'éviter des dégradations de performance. En particulier, nous proposons une méthode numérique d'étalonnage des phases des émetteurs. La dernière partie consiste à mener des expérimentations en conditions réelles avec la plateforme radar MIMO Hycam. Nous montrons que certaines distorsions subies non anticipées, même limitées en sortie de filtre adapté, peuvent impacter fortement les performances en détection des traitements dépendant du modèle de signal. / The MIMO radar concept promises numerous advantages compared to today's radar architectures: flexibility for the transmitting beampattern design - including wide scene illumination and fine resolution after processing - and system complexity reduction, through the use of less antennas and the possibility to transfer system control and calibration to the digital domain. However, the MIMO radar is still at the stage of theoretical concept, with insufficient consideration for the impacts of waveforms' lack of orthogonality and system hardware imperfections.The ambition of this thesis is to contribute to paving the way to the operational MIMO radar. In this perspective, this thesis work consists in anticipating and compensating the imperfections of the real world with processing techniques. The first part deals with MIMO waveform design and we show that phase code waveforms are optimal in terms of spatial resolution. We also exhibit their limits in terms of sidelobes appearance at matched filter output. The second part consists in taking on the waveform intrinsic imperfections and proposing data-dependent processing schemes for the rejection of the induced residual sidelobes. We develop an extension for the Orthogonal Matching Pursuit (OMP) that satisfies operational requirements, especially localization error robustness, low computation complexity, and nonnecessity of training data. The third part deals with processing robustness to signal model mismatch, especially how it can be prevented or anticipated to avoid performance degradation. In particular, we propose a digital method of transmitter phase calibration. The last part consists in carrying out experiments in real conditions with the Hycam MIMO radar testbed. We exhibit that some unanticipated encountered distortions, even when limited at the matched filter output, can greatly impact the performance in detection of the data-dependent processing methods.
7

Imagerie sismique 4D quantitative en milieux complexes par l'inversion 2D de forme d'onde complète / Quantitative 4D seismic imaging in complex media using 2D full-waveform inversion

Asnaashari, Amir 14 October 2013 (has links)
Le suivi temporel est un processus d’acquisition et d’analyse d’acquisitions multiples répétées au même endroit sur la même cible à différentes périodes de temps. Cela s’applique bien à l’exploration sismique quand les propriétés de la cible varient au cours du temps comme pour les réservoirs pétroliers. Cette technique de sismique, dite 4D en raison de l’intégration du temps dans la construction des images, permet une détection et une estimation des variations du sous-sol survenues lors de l’évolution en temps du milieu. En particulier, dans l’industrie, le suivi et la surveillance peuvent améliorer notre compréhension d’un réservoir de pétrole/gaz ou d’un site de stockage de CO2. Analyser la sismique 4D peut aider à mieux gérer les programmes de production des réservoirs. Ainsi, des acquisitions répétées permettent de suivre l’évolutiondes fronts de fluide injectés: on peut optimiser les programmes d’injection de fluides pour une récupération améliorée des hydrocarbures (enhanced oil recovery). Plusieurs méthodes ont été développées pour l’imagerie variable dans le temps en utilisant les informations des ondes sismiques. Dans ma thèse, je montre que l’inversion de forme d’onde complété (FWI) peut être utilisée pour cette imagerie. Cette m´méthode offre des images sismiques quantitatives haute résolution. Elle est une technique prometteuse pour reconstruire les petites variations de propriétés physiques macro-échelle du sous-sol. Sur une cible identifiée pour ces imageries 4D, plusieurs informations a priori sont souvent disponibles et peuvent être utilisées pour augmenter la résolution de l’image. J’ai introduit ces informations grâce à la définition d’un modèle a priori dans une approche classique FWI en l’accompagnant de la construction d’un modèle d’incertitudes a priori. On peut réaliser deux reconstructions indépendantes et faire la différence les reconstruits: on parle de différence parallèle. On peut aussi effectuer une différence séquentielle o`u l’inversion de l’ensemble de données de la second acquisition, dite moniteur, se fait `a partir du modèle de base et non plus à partir du modèle utilisé initialement. Enfin, l’approche double-différence conduit à l’inversion des différences entre les deux jeux de données que l’on rajoute aux données synthétiques du modèle de base reconstruit. J’étudie quelle stratégie est à adopter pour obtenir des changements vitesse plus précis et plus robustes. En plus, je propose une imagerie 4D ciblée en construisant un modèle d’incertitude a priori grâce `a une information (si elle existe) sur la localisation potentielle des variations attendues. Il est démontré que l’inversion 4D ciblée empêche l’apparition d’artéfacts en dehors des zones cibles: on évite la contamination des zones extérieures qui pourrait compromettre la reconstruction des changements 4D réels. Une étude de sensibilité, concernant l’échantillonnage en fréquence pour cette imagerie 4D, montre qu’il est nécessaire de faire agir simultanément un grand nombre de fréquences au cours d’un cycle d’inversion. Ce faisant, l’inversion fournit un modèle de base plus précis que l’approche temporelle, ainsi qu’un modèle des variations 4D plus robuste avec moins d’artéfacts. Toutefois, la FWI effectuée dans le domaine temporel semble être une approche plus intéressante pour l’imagerie 4D. Enfin, l’approche d’inversion 4D régularisée avec un modèle a priori est appliquée sur des ensembles de données réelles d’acquisitions sismiques répétées fournis par TOTAL. Cette reconstruction des variations locales s’inscrit dans un projet d’injection de vapeur pour améliorer la récupération des hydro-carbures: Il est possible de reconstituer des variations de vitesse fines causées par la vapeur injectée. / Time-lapse monitoring is the process of acquiring and analysing multiple seismic surveys, repeatedat the same place at different time periods. This seismic technique, called 4D becauseof the integration time in the construction of images, allows detection and estimation of thesubsurface parameter variations occured through a time evolution. Particularly, in industries,the monitoring can improve our understanding of a producing oil/gas reservoir and CO2 storagesite. Analyzing the time-lapse seismics can help to better manage production programsof reservoirs. In addition, repeated surveys can monitor the evolution of injected fluid frontsand can permit to optimize injection programs which are considered for enhanced oil recovery(EOR) techniques.Several methods have been developed for time-lapse imaging using seismic wave information.In my thesis, I show that full waveform inversion (FWI) can be used for time-lapseimaging, since this method delivers high-resolution quantitative seismic images. It is a promisingtechnique to recover small variations of macro-scale physical properties of the subsurface.In time-lapse applications, several sources of prior information are often available and shouldbe used to increase the image reliability and its resolution. I have introduced this informationthrough a definition of a prior model in a classical FWI approach by also considering a prioruncertainty model. In addition, I have suggested a dynamic weighting to reduce the importanceof these prior models in the final convergence. In realistic synthetic cases, I have shownhow the prior model can reduce the sensitivity of FWI to a less accurate initial model. It istherefore possible to obtain a highly accurate baseline model for 4D imaging.Once the baseline reconstruction is achieved, several strategies can be used to assess thephysical parameter changes. We can make two independent reconstructions of baseline andmonitor models and make subtraction of the two reconstructed models. This strategy is calledparallel difference. The sequential difference strategy inverts the monitor dataset starting fromthe recovered baseline model, and not from the model used initially. Finally, the doubledifferencestrategy inverts the difference data between two datasets which are added to thecalculated baseline data computed in the recovered baseline model. I investigate which strategyshould be adopted to get more robust and more accurate time-lapse velocity changes. Inaddition, I propose a target-oriented time-lapse imaging using regularized FWI including priormodel and model weighting, if the prior information exists on the location of expected variations.It is shown that the target-oriented inversion prevents the occurrence of artifacts outsidethe target areas, which could contaminate and compromise the reconstruction of the effectivetime-lapse changes.A sensitivity study, concerning several frequency decimations for time-lapse imaging, showsthat the frequency-domain FWI requires a large number of frequencies inverting simultaneously.By doing so, the inversion provides a more precise baseline model and more robust time-lapsevariation model with less artifacts. However, the FWI performed in the time domain appearsto be a more interesting approach for time-lapse imaging considering all frequency content.Finally, the regularized time-lapse FWI with prior model is applied to the real field timelapsedatasets provided by TOTAL. The reconstruction of local variations is part of a steaminjection project to improve the recovery of hydrocarbons: it is possible to reconstruct thevelocity variations caused by the injected steam.
8

Imagerie sismique 4D quantitative en milieux complexes par l'inversion 2D de forme d'onde complète

Asnaashari, Amir 14 October 2013 (has links) (PDF)
Le suivi temporel est un processus d'acquisition et d'analyse d'acquisitions multiples répétées au même endroit sur la même cible à différentes périodes de temps. Cela s'applique bien à l'exploration sismique quand les propriétés de la cible varient au cours du temps comme pour les réservoirs pétroliers. Cette technique de sismique, dite 4D en raison de l'intégration du temps dans la construction des images, permet une détection et une estimation des variations du sous-sol survenues lors de l'évolution en temps du milieu. En particulier, dans l'industrie, le suivi et la surveillance peuvent améliorer notre compréhension d'un réservoir de pétrole/gaz ou d'un site de stockage de CO2. Analyser la sismique 4D peut aider à mieux gérer les programmes de production des réservoirs. Ainsi, des acquisitions répétées permettent de suivre l'évolutiondes fronts de fluide injectés: on peut optimiser les programmes d'injection de fluides pour une récupération améliorée des hydrocarbures (enhanced oil recovery). Plusieurs méthodes ont été développées pour l'imagerie variable dans le temps en utilisant les informations des ondes sismiques. Dans ma thèse, je montre que l'inversion de forme d'onde complété (FWI) peut être utilisée pour cette imagerie. Cette m'méthode offre des images sismiques quantitatives haute résolution. Elle est une technique prometteuse pour reconstruire les petites variations de propriétés physiques macro-échelle du sous-sol. Sur une cible identifiée pour ces imageries 4D, plusieurs informations a priori sont souvent disponibles et peuvent être utilisées pour augmenter la résolution de l'image. J'ai introduit ces informations grâce à la définition d'un modèle a priori dans une approche classique FWI en l'accompagnant de la construction d'un modèle d'incertitudes a priori. On peut réaliser deux reconstructions indépendantes et faire la différence les reconstruits: on parle de différence parallèle. On peut aussi effectuer une différence séquentielle o'u l'inversion de l'ensemble de données de la second acquisition, dite moniteur, se fait 'a partir du modèle de base et non plus à partir du modèle utilisé initialement. Enfin, l'approche double-différence conduit à l'inversion des différences entre les deux jeux de données que l'on rajoute aux données synthétiques du modèle de base reconstruit. J'étudie quelle stratégie est à adopter pour obtenir des changements vitesse plus précis et plus robustes. En plus, je propose une imagerie 4D ciblée en construisant un modèle d'incertitude a priori grâce 'a une information (si elle existe) sur la localisation potentielle des variations attendues. Il est démontré que l'inversion 4D ciblée empêche l'apparition d'artéfacts en dehors des zones cibles: on évite la contamination des zones extérieures qui pourrait compromettre la reconstruction des changements 4D réels. Une étude de sensibilité, concernant l'échantillonnage en fréquence pour cette imagerie 4D, montre qu'il est nécessaire de faire agir simultanément un grand nombre de fréquences au cours d'un cycle d'inversion. Ce faisant, l'inversion fournit un modèle de base plus précis que l'approche temporelle, ainsi qu'un modèle des variations 4D plus robuste avec moins d'artéfacts. Toutefois, la FWI effectuée dans le domaine temporel semble être une approche plus intéressante pour l'imagerie 4D. Enfin, l'approche d'inversion 4D régularisée avec un modèle a priori est appliquée sur des ensembles de données réelles d'acquisitions sismiques répétées fournis par TOTAL. Cette reconstruction des variations locales s'inscrit dans un projet d'injection de vapeur pour améliorer la récupération des hydro-carbures: Il est possible de reconstituer des variations de vitesse fines causées par la vapeur injectée.
9

Optimization of differential ion mobility and segmented ion fractionation to improve proteome coverage

Wu, Zhaoguan 09 1900 (has links)
La sensibilité et la profondeur de l'analyse protéomique sont limitées par les ions isobares et les interférences qui entravent l'identification des peptides de faible abondance. Lorsque nous analysons des échantillons de grande complexité, une séparation extensive de l'échantillon est souvent nécessaire pour étendre la couverture protéomique. Ces dernières années, la spectrométrie de mobilité ionique à forme d'onde asymétrique à haut champ (FAIMS) a gagné en popularité dans le domaine de la protéomique pour sa capacité à séparer les ions isobares, à améliorer la capacité de pic et la sensibilité de la spectrométrie de masse (MS). Nous rapportons ici l'intégration d'un appareil FAIMS Pro™ à un Q-Exactive HF™ ainsi qu'un spectromètre de masse Orbitrap Exploris 480™. Des expériences protéomiques sur des digestions d'extraits protéiques issues de cellules Hela à l'aide d'un spectromètre de masse avec FAIMS ont amélioré le rapport signal sur bruit (S/N) et réduit les ions interférents, ce qui a entraîné une augmentation du taux d'identification des peptides de plus de 42 %. FAIMS est également combiné avec le fractionnement ionique segmenté (SIFT), qui utilise tour à tour une fenêtre de 100 ~ 300 m/z au lieu de la large plage traditionnelle (700 ~ 800 m/z), augmentant ainsi la profondeur de la couverture protéomique tout en réduisant la proportion de spectres MS/MS chimériques de 50% à 27%. Dans l'analyse quantitative, nous démontrons l'application de FAIMS pour améliorer les mesures quantitatives lorsque le marquage peptidique isobare est utilisé. Par rapport aux expériences LC-MS/MS conventionnelles, la combinaison des expériences FAIMS et SIFT réalisées sur un modèle à deux protéomes a montré une amélioration de 65 % de la précision des mesures quantitatives. Les digestions tryptiques d'extraits protéiques de différentes lignées cellulaires du cancer colorectal ont été utilisées pour l'évaluation de stratégie combinée FAIMS et SIFT sur un spectromètre de masse Orbitrap Exploris 480™ offre un gain d'identification de 70 % par rapport à l'approche conventionnelle et combinée aux données transcriptomiques elle facilite l’identification de variants protéiques. / The sensitivity and depth of proteomic analysis in mass spectrometry (MS) is limited by isobaric ions and interferences that hinder the identification of low-abundance peptides. For high complexity samples, extensive separation is often required to expand proteomic coverage. In recent years, high-field asymmetric waveform ion mobility spectrometry (FAIMS) has gained popularity in the field of proteomics for its ability to resolve confounding ions, improve peak capacity, and sensitivity. This thesis presents the integration of a FAIMS Pro™ interface with electrical and gas embedded connections to a Q-Exactive HF™ as well as an Orbitrap Exploris 480™ mass spectrometer. Proteomic experiments on tryptic digests of HeLa cell line using a FAIMS integrated mass spectrometer improved signal-to-noise ratio (S/N) and reduced the occurrence of interfering ions. This enabled a 42% increase in peptide identification rate. Also, FAIMS was combined with segmented ion fractionation (SIFT), which in turn scans with windows of 100~300 m/z width instead of the traditional width (700~800 m/z), further increasing the depth of proteome coverage by a reducing from 50% to 27% in terms of MS/MS chimeric spectra numbers. The application of FAIMS gain improvement on quantitative measurements with TMT labeling method is presented. Compared to conventional LC-MS/MS tests, the combination of FAIMS and SIFT experiments showed a improvement by 65% in quantitative accuracy when performed on a human-yeast two-proteome model. As an application of the method, the tryptic digests from different colorectal cancer cell lines were used for the evaluation. FAIMS-SIFTcombined strategy on an Orbitrap Exploris 480™ mass spectrometer provides a 70% gain in identification compared to the conventional LC-MS/MS approach for the same sample amount and instrument time. This enhanced sensitivity facilitates single amino acid mutations confirmed by RNAseq analyses.

Page generated in 0.0782 seconds