• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scope and limitations of the mathematical models developed for the forward feed multi-effect distillation process-a review

Al-hotmani, Omer M.A., Al-Obaidi, Mudhar A.A.R., John, Yakubu M., Patel, Rajnikant, Mujtaba, Iqbal M. 31 March 2022 (has links)
Yes / Desalination has become one of the obvious solutions for the global water crisis due to affording high-quality water from seawater and brackish water resources. As a result, there are continuing efforts being made to improve desalination technologies, especially the one producing high-quantity freshwater, i.e., thermal desalination. This improvement must be accomplished via enhancement of process design through optimization which is implicitly dependent on providing a generic process model. Due to the scarcity of a comprehensive review paper for modeling multi-effect distillation (MED) process, this topic is becoming more important. Therefore, this paper intends to capture the evolution of modeling the forward feed MED (most common type) and shed a light on its branches of steady-state and dynamic modeling. The maturity of the models developed for MED will be thoroughly reviewed to clarify the general efforts made highlighting the advantages and disadvantages. Depending on the outputs of this review, the requirements of process development and emerging challengeable matters of modeling will be specified. This, in turn, would afford a possible improvement strategy to gain a reliable and sustainable thermal desalination process.

Page generated in 0.0449 seconds