• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Multi-Target Graph-Constrained HMM Localisation Approach using Sparse Wi-Fi Sensor Data / Graf-baserad HMM Lokalisering med Wi-Fi Sensordata av Gångtrafikanter

Danielsson, Simon, Flygare, Jakob January 2018 (has links)
This thesis explored the possibilities of using a Hidden Markov Model approach for multi-target localisation in an urban environment, with observations generated from Wi-Fi sensors. The area is modelled as a network of nodes and arcs, where the arcs represent sidewalks in the area and constitutes the hidden states in the model. The output of the model is the expected amount of people at each road segment throughout the day. In addition to this, two methods for analyzing the impact of events in the area are proposed. The first method is based on a time series analysis, and the second one is based on the updated transition matrix using the Baum-Welch algorithm. Both methods reveal which road segments are most heavily affected by a surge of traffic in the area, as well as potential bottleneck areas where congestion is likely to have occurred. / I det här examensarbetet har lokalisering av gångtrafikanter med hjälp av Hidden Markov Models utförts. Lokaliseringen är byggd på data från Wi-Fi sensorer i ett område i Stockholm. Området är modellerat som ett graf-baserat nätverk där linjerna mellan noderna representerar möjliga vägar för en person att befinna sig på. Resultatet för varje individ är aggregerat för att visa förväntat antal personer på varje segment över en hel dag. Två metoder för att analysera hur event påverkar området introduceras och beskrivs. Den första är baserad på tidsserieanalys och den andra är en maskinlärningsmetod som bygger på Baum-Welch algoritmen. Båda metoderna visar vilka segment som drabbas mest av en snabb ökning av trafik i området och var trängsel är troligt att förekomma.

Page generated in 0.0352 seconds