• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imaging Fourier transform spectroscopy from a space based platform : the Herschel/SPIRE Fourier transform spectrometer

Spencer, Locke Dean, University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
The Herschel Space Observatory (Herschel), a flagship mission of the European Space Agency (ESA), is comprised of three cryogenically cooled instruments commissioned to explore the far-infrared/submillimetre universe. Herschel's remote orbit at the second Lagrangian point (L2) of the Sun-Earth system, and its cryogenic payload, impose a need for thorough instrument characterization and rigorous testing as there will be no possibility for any servicing after launch. The Spectral and Photometric Imaging Receiver (SPIRE) is one of the instrument payloads aboard Herschel and consists of a three band imaging photometer and a two band imaging spectrometer. The imaging spectrometer on SPIRE consists of a Mach-Zehnder (MZ)-Fourier transform spectrometer (FTS) coupled with bolometric detector arrays to form an imaging FTS (IFTS). This thesis presents experiments conducted to verify the performance of an IFTS system from a space based platform, i.e. the use of the SPIRE IFTS within the Herschel space observatory. Prior to launch, the SPIRE instrument has undergone a series of performance verification tests conducted at the Rutherford Appleton Laboratory (RAL) near Oxford, UK. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. Through this thesis project I have been stationed at RAL for a period spanning fifteen months to participate in the development, performance verification, and characterization of both the SPIRE FTS and photometer instruments. This thesis discusses Fourier transform spectroscopy and related FTS data process ing (Chapter 2). Detailed discussions are included on the spectral phase related to the FTS beamsplitter (Chapter 3), the imaging aspects of the SPIRE IFTS instrument (Chapter 4), and the noise characteristics of the SPIRE bolometer detector arrays as measured using the SPIRE IFTS (Chapter 5). This thesis presents results from experiments performed both on site at the RAL Space Science and Technology Department (SSTD) Assembly Integration Verification (AIV) instrument test facility as well as from the Astronomical Instrumentation Group (AIG) research laboratories within the Department of Physics & Astronomy at the University of Lethbridge. / xxiii, 243 leaves : ill. (some col.) ; 29 cm
2

SHIFTS : simulator for the Herschel imaging fourier transform spectrometer

Lindner, John Vyvyan, University of Lethbridge. Faculty of Arts and Science January 2006 (has links)
The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on the European Space Agency's (ESA's) Herschel Space Observatory (HSO). The medium resolution spectroscopic capabilities of SPIRE are provided by an imaging Fourier transform spectrometer (IFTS). A software simulator of the SPIRE IFTS was written to generate realistic data products, making use of available qualification and test data. We present the design and implementation of the simulator. Component and end-to-end simulations were compared to results from the first SPIRE instrument proto-flight model (PFMI) test campaign conducted at the Rutherford Appleton Laboratory (RAL) in Oxford, England in 2005. Final characterization of the simulator involved the determination of astronomical quantities from the synthetic data products of a simple molecular cloud. / xix, 213 leaves : ill. (some col.) ; 29 cm.

Page generated in 0.1139 seconds