Spelling suggestions: "subject:"fourth own"" "subject:"fourth down""
1 |
Enhancing NFL Game Insights: Leveraging XGBoost For Advanced Football Data Analytics To Quantify Multifaceted Aspects Of GameplaySchoborg, Christopher P 01 January 2024 (has links) (PDF)
XGBoost, renowned for its efficacy in various statistical domains, offers enhanced precision and efficiency. Its versatility extends to both regression and categorization tasks, rendering it a valuable asset in predictive modeling. In this dissertation, I aim to harness the power of XGBoost to forecast and rank performances within the National Football League (NFL). Specifically, my research focuses on predicting the next play in NFL games based on pre-snap data, optimizing the draft ranking process by integrating data from the NFL combine, and collegiate statistics, creating a player rating system that can be compared across all positions, and evaluating strategic decisions for NFL teams when crossing the 50-yard line, including the feasibility of attempting a first down conversion versus opting for a field goal attempt.
|
Page generated in 0.0433 seconds