• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemotactic signals released during Burkitt's lymphoma cell death

Pasikowska, Marta January 2011 (has links)
Tumour-associated macrophages (TAMs) have been shown to play an important role in tumour survival and progression. Thus, high numbers of macrophages in the tumour tissue are often associated with a poor prognosis. Identification of factors responsible for recruiting macrophages to the sites of different types of tumours might help to develop more effective cancer treatment. Burkitt's lymphoma (BL) is characterised by uncontrolled cell proliferation, high rate of spontaneous apoptosis and significant macrophage infiltration. Although BL cells undergo extensive apoptosis, in situ their corpses are cleared very effectively by macrophages infiltrating the tumour. It is now widely believed that dying cells are themselves able to release chemotactic molecules to ensure macrophage chemotaxis and subsequent clearance of their site of death. Previous work carried out in this laboratory identified fractalkine/CX3CL1 (FKN) released from dying BL cells to be an important player in macrophage chemotaxis to BL. Yet, these results have also indicated that FKN may not be the only chemokine involved in this process. Following from those observations, the first part of this work focused on examination of the potential role of monocyte chemoattractant protein-1 (MCP-1) in macrophage recruitment to BL. Despite the initial promising results, careful analysis of the data obtained by various techniques led to the conclusion that MCP-1 is, probably, not expressed by BL cells. Subsequently, effort was concentrated on understanding mechanisms regulating FKN processing during cell death. The studies performed before in this laboratory identified a new form of FKN to be present in apoptotic BL cells and showed that this is the form that is, most likely, responsible for mediating macrophage migration. Here, this apoptosis-related 60 kDa FKN was found to be a likely caspase-3 cleavage product. Moreover, it was demonstrated that FKN and active caspase-3 are released together in apoptotic BL cell-derived microparticles, suggesting that the proteolytic events could take place also extracellularly. In the final results chapter the differences between BL cell lines in the way they process FKN during cell death were revealed and a new cell death-associated 55 kDa FKN was observed. Through several lines of evidence, this new form was identified to be a possible product of calpain-mediated proteolysis. To conclude, this work provides the first evidence for a possible direct participation of the two major cell death executioner proteases – caspases and calpains, in production of ‘find me’ signals for macrophages and thus, ensuring effective clearance of dying cells. These results indicate that FKN cleavage and release might be of key importance during cell death. Moreover, the studies presented here contribute to better understanding of the process of FKN secretion.
2

Recherche de nouvelles stratégies thérapeutiques des métastases osseuses : utilisation de la chimiokine CX3CL1 ou de ciments chargés en bisphosphonates / Research of new therapeutic strategies for bone metastases : use of CX3CL1 or bisphosphonate-loaded calcium phosphate cements as new therapeutic tools

Al-Sahlanee, Rasha 28 October 2016 (has links)
Malgré les avancées thérapeutiques récentes, le pronostic des patients porteurs de métastases osseuses (MO) reste faible, ce qui incite à chercher des nouvelles stratégies thérapeutiques. Les chimiokines sont des acteurs majeurs de la réponse immune, et apparaissent comme des cibles potentielles de l’immunothérapie anti-cancéreuse. Nous avons recherché à définir si la chimiokine CX3CL1 pouvait représenter un axe thérapeutique efficace dans le contexte des MO. Pour cela nous avons développé des modèles murins de MO de cancer du rein et du poumon. Dans le modèle de MO de cancer du poumon, notre travail a démontré que l'expression de CX3CL1 inhibe la croissance tumorale. L’analyse transcriptomique des tumeurs a montré que CX3CL1 diminue (i) l’ostéloyse via un effet sur la triade OPG/RANKL/RANK (ii) l'expression de certains checkpoints, en faveur d’une réponse immune antitumorale. En revanche, dans le modèle de MO de cancer du rein, l’expression de CX3CL1 stimule le développement tumoral et l'ostéolyse via une action sur la triade OPG/RANKL/RANK et inhibe la réponse immune antitumorale via une augmentation de l'expression de certains checkpoints immunitaires. Les bisphosphonates (BPs) sont des agents utilisés pour le traitement des MO. Afin de réduire leurs effets indésirables, nous avons utilisé des ciments de phosphate de calcium (CPC), pour délivrer localement dans l’os des BPs (alendronate, ALN). Notre travail a mis en évidence que (i) ces ciments chargés en ALN relarguent en continue les BPs, (ii) le relarguage d’ALN est efficace pour induire des effets cytotoxiques et pro-apoptotiques vis à vis des cellules de cancer du sein / Despite recent therapeutic improvments, the prognosis for a patient with bone metastases (BM) remains poor, this situation prompting the research of new therapeutic strategies. Chemokines are central players in the immune response, and appear as potential targets in anti-cancer immunotherapies. We are interested to determine whether the CX3CL1 chemokine exerted pro or anti-tumor actions within the bone metastatic context. To address this issue, we developed mouse models of lung or renal cancer BM. In lung cancer BM model, our work demonstrated that CX3CL1 expression led to tumor growth inhibition. Tumors transcriptomic analysis revealed that CX3CL1: (i) impacted bone metabolism by modulating the OPG/RANKL/RANK triad (ii) decreased the expression of certain immune checkpoints, this up-regulating the anti-tumor immune response. By contrast, in renal cancer BM model, CX3CL1 expression stimulated bone tumor development and transcriptomic analysis showed that CX3CL1 (i) promoted osteolysis through an action on the OPG/RANKL/RANK triad (ii) -induced tumor development correlated with an increased expression of certain immune checkpoints, this down-regulating the anti-tumor immune response. Bisphosphonates (BPs) are targeted agents used for BM treatment. In order to reduce their side effects, we used resorbable calcium phosphate cements (CPC), which are frequently used as bone void fillers, as platform for a local delivery of BPs (alendronate, ALN). As a whole, our in vitro data demonstrated that: (i) ALN-CPC cements continuous released ALN; (ii) this ALN release was effective in inducing cytotoxic and pro-apoptotic effects in breast cancer cells

Page generated in 0.0282 seconds