• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Fracture Flow Modeling to Understand the Effectiveness of Pump and Treat Remediation in Dual Permeability Media

Rodack, Haley Elizabeth January 2015 (has links)
Pump and treat remediation is the most commonly used method to remediate contaminated aquifers, but the effectiveness decreases when heterogeneities are introduced. Fractures within the matrix cause large differences in hydraulic conductivity. The low hydraulic conductivity of the matrix acts as an area of storage for contaminant, allowing for attenuation of the plume. The attenuation of the plume causes the effectiveness of the system to decrease and cost of remediation to increase. In order to understand what parameters enhance contaminant storage in the matrix, rapid transport in fractures, and both of their influences on the efficiency of the pumping system, a hypothetical model was developed to simulate the release and remediation of a plume using pumping. The code used was HydroGeoSphere, which allowed for the interpretation of parameters influencing contaminant storage during the withdrawal phase of the pump and treat remediation by allowing transport of contaminant within both the matrix and the fractures. Matrix parameters of porosity and hydraulic conductivity influenced the effectiveness of the withdrawal system most. For instance, the difference in percent mass extracted between porosity values of 0.01 and 0.4 was 23.75%, while the difference between fracture lengths of 200 and 400 m was 5.59%. Fracture pattern influenced where the stored contaminant was located within the matrix. Downgradient of the source, six different fracture patterns resulted in a difference in relative concentration of 0.4 at the start of the withdrawal phase. Evaluation of remediation included both percent extraction of contaminant and finer scale remediation of the contaminant specifically within the matrix. Multiple length-scale observations helped determine how fracture and matrix parameters influence remediation in dual permeability media. / Geology

Page generated in 0.0998 seconds