• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determining CO2 Storage Potential: Characterization of Seal Integrity and Reservoir Failure in Exposed Analogs

Barton, Daniel Corey 01 December 2011 (has links)
Sequestration of carbon dioxide (CO2) into subsurface porous sandstone is proposed as a method for reducing accumulation of anthropogenic emissions of CO2 into the atmosphere. Natural exposures of reservoir and top-seal pairs in central and southeastern Utah are identified as analogs to proposed CO2 injection targets. Reservoir and top-seal pairs in natural analog exposures are analyzed in tandem to evaluate evidence for paleo-migration of fluids and/or hydrocarbons from the reservoir through the top seal. The San Rafael Swell and Monument Uplift exhibit similar structure and exposures of Jurassic units yet differ in amount and type of host rock alteration due to variable amounts and types of fluids and/or hydrocarbons that migrated along faults and fractures. Macroscopic scale analysis of each monocline included processing of satellite imagery, and creation of depth contour maps. At the mesoscopic scale, fracture spacing acquired from scanline station measurements identified increased fracture frequency in proximity to major fault zones. At the microscopic scale, percentage of degradation and type of mineralization in pore space were used to verify increased fluid flow in proximity to major fault zones. Faults with possible intersections with multiple antithetic faults at depth have an increased probability of allowing for upward migration of fluids and/or hydrocarbons along the fault plane and damage zone, effectively bypassing the top sealing formations. Fault leakage potential maps identified areas where seal bypass along major faults would likely occur during sequestration of CO2. The method was validated by identifying potential migration pathways for oil seeps on the Little Grand Wash fault in central Utah. The San Rafael Swell was geometrically modeled through restoration of eroded formation tops along the fold axis to quantify the interaction between an outward migrating CO2 plume and varying degrees of faulting and fracturing. Analysis of the migration of a CO2 plume front through time exhibits an increasing probability of the outward migrating plume intersecting a leaking feature, with the highest probability of the advancing plume intersecting a potentially leaking feature achieved when faults with 1+ km trace length and mean fracture spacing of 17 cm are taken into consideration. (177 pages)
2

Investigation of the correlation of fracture frequency and electric resistivity in impact craters in crystalline rocks

Bäckström, Ann January 2004 (has links)
<p>Impact craters are formed when a large meteorite or comethits the Earth. At the impact a shock wave is released causingabundant fracturing in the surrounding bedrock. This type offracturing is intense and occurs throughout a very large volume(>100 km<sup>3</sup>) of the bedrock. Fractures of this type have beenobserved in deep drilling, to 5 km depth, in thePuchezh-Katunki Impact Crater. At theses depths the ambienttemperature is high. Thus impact structures are candidates forpotential heat-exchange sources for extraction of geothermalenergy.</p><p>There is a relation between fracture intensity and electricresistivity in bedrock predominated by impact-generatedfractures. In crystalline bedrock changes in electricresistivity is mainly due to fracturing which is the mainsource of porosity in these rocks. Electric resistivity methodsare highly sensitivity to porosity. Furthermore highfracture-intensities have generally been associated with lowelectric resistivity. Electro-magnetic methods like Very LowFrequency Resistivity (VLF-R) and Magnetotellurics (MT) canindirectly measure electric resistivity to relatively largedepths in the bedrock.</p><p>This study will quantify the relationship between fractureintensity and electric resistivity which can be used as aprospecting tool for geothermal energy resources at largedepth.</p><p>To meet that end, a method for fracture mapping on outcropsin Swedish terrain and a method to calculate thethree-dimensional fracture frequency from two-dimensionalfracture data has been developed. The fracture traces measuredin two dimensions on outcrops are assumed to represent avertical surface and must be converted to a three-dimensionalmeasure of the fracture frequency per unit volume. Spacing, dipand trace length of fractures have been accounted for. Thebiases associated with the mapping method have also beenaccounted for (II).</p><p>The correlation between impact-induced fracturing andelectric resistivity in crystalline rocks in the Lockne Areashows that the extent of impact fracturing in crystalline rockscan be measured with electro-magnetic or electric techniques.In addition the electric resistivity of crystalline basementand impact generated Tandsby Breccia from the Lockne Craterwere determined (I).</p><p>The relation between fracture frequency and electricresistivity in fresh water conditions using the VLF-R method isestablished from data collected from both two drill holes andfrom numerous outcrops in the Björkö region. Apreliminary quantification of the fracture frequency has beenmade. The MT resistivity models, related to the two drillholes, show that porosity and mineral-conductivity variationsof the bedrock affect this relation more than the salinityvariations in the bore-hole fluid. Further research is neededto establish a firm relation between fracture frequency,salinity of rock fluid, conductivity and porosity in order tovalidate the MT resistivity models (III).</p><p><b>Keywords:</b>Electric resistivity, Fracture frequency,Impact generated fractures, Electro-magnetic techniques, VLF-Rmethod, MT method, Window-mapping technique, Three-dimensionalfracture calculations, heat-exchange structure, geothermalenergy.</p>
3

Investigation of the correlation of fracture frequency and electric resistivity in impact craters in crystalline rocks

Bäckström, Ann January 2004 (has links)
Impact craters are formed when a large meteorite or comethits the Earth. At the impact a shock wave is released causingabundant fracturing in the surrounding bedrock. This type offracturing is intense and occurs throughout a very large volume(&gt;100 km3) of the bedrock. Fractures of this type have beenobserved in deep drilling, to 5 km depth, in thePuchezh-Katunki Impact Crater. At theses depths the ambienttemperature is high. Thus impact structures are candidates forpotential heat-exchange sources for extraction of geothermalenergy. There is a relation between fracture intensity and electricresistivity in bedrock predominated by impact-generatedfractures. In crystalline bedrock changes in electricresistivity is mainly due to fracturing which is the mainsource of porosity in these rocks. Electric resistivity methodsare highly sensitivity to porosity. Furthermore highfracture-intensities have generally been associated with lowelectric resistivity. Electro-magnetic methods like Very LowFrequency Resistivity (VLF-R) and Magnetotellurics (MT) canindirectly measure electric resistivity to relatively largedepths in the bedrock. This study will quantify the relationship between fractureintensity and electric resistivity which can be used as aprospecting tool for geothermal energy resources at largedepth. To meet that end, a method for fracture mapping on outcropsin Swedish terrain and a method to calculate thethree-dimensional fracture frequency from two-dimensionalfracture data has been developed. The fracture traces measuredin two dimensions on outcrops are assumed to represent avertical surface and must be converted to a three-dimensionalmeasure of the fracture frequency per unit volume. Spacing, dipand trace length of fractures have been accounted for. Thebiases associated with the mapping method have also beenaccounted for (II). The correlation between impact-induced fracturing andelectric resistivity in crystalline rocks in the Lockne Areashows that the extent of impact fracturing in crystalline rockscan be measured with electro-magnetic or electric techniques.In addition the electric resistivity of crystalline basementand impact generated Tandsby Breccia from the Lockne Craterwere determined (I). The relation between fracture frequency and electricresistivity in fresh water conditions using the VLF-R method isestablished from data collected from both two drill holes andfrom numerous outcrops in the Björkö region. Apreliminary quantification of the fracture frequency has beenmade. The MT resistivity models, related to the two drillholes, show that porosity and mineral-conductivity variationsof the bedrock affect this relation more than the salinityvariations in the bore-hole fluid. Further research is neededto establish a firm relation between fracture frequency,salinity of rock fluid, conductivity and porosity in order tovalidate the MT resistivity models (III). Keywords:Electric resistivity, Fracture frequency,Impact generated fractures, Electro-magnetic techniques, VLF-Rmethod, MT method, Window-mapping technique, Three-dimensionalfracture calculations, heat-exchange structure, geothermalenergy.

Page generated in 0.0399 seconds