• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CUSTOM DESIGNED MHC BINDING PEPTIDES FOR CANCER IMMUNOTHERAPY

Myers, Cheryl Eleanor January 2009 (has links)
Cancer immunotherapy seeks to boost the host’s immune system to respond to tumor antigens. The adaptive immune system comprises of two arms, one that elicits a cellular immune response and one that elicits a humoral immune response. Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides presented to them in the context of class I major histocompatibility complex (MHC) molecules and are capable of killing tumor cells. CTL are educated to discriminate between foreign and self-antigen. Tumors frequently express self-antigen which usually makes them poorly immunogenic. Because tumors are genetically unstable, they may present excess self peptides and/or peptides in a reading frame different from wild type self proteins. These frameshift (FS) peptides, are caused by an insertion or deletion of nucleotides that disrupt translation of the normal reading frame and alters the protein produced such that it is non-self. Binding affinity, dissociation rate and the overall stability of the peptide/MHC/β₂-microglobulin complex are important considerations in determining the immunogenicity of a given peptide. Interaction between the anchor residues in a peptide and binding pockets in MHC are essential, but this interaction is not always strong enough to stimulate T cell responses. This indicates that not all amino acids of the peptide ligand bound to MHC are equally important for the functional outcome of the receptor engagement and that other amino acid residues in the sequence are important for binding. Optimized peptide ligands (OPL) are analogues derived from natural wild type antigenic peptides that contain amino acid substitutions at anchor and auxiliary residues. OPL can be rationally designed to generate a more robust immune response compared to that of the wild-type peptide. Active immunotherapy using OPL of tumor antigen epitopes are designed to elicit tumor-specific CTL that can overcome tolerance and either re-awaken or elicit new T-cell responses to an antigen. The work and principles presented here using brain tumor-derived peptides demonstrates that HLA-A*0201-restricted CTL generated against wild type, frameshift and OPL peptides elicit CTL that were able to recognize and respond to wild type, tumorderived peptides. The response was donor dependent in that not all individuals responded more strongly to OPL; a minority responded better to wild type peptide. This data further suggests that the rational design and testing of multiple peptides for the same epitope should elicit a broader response among different individuals than single peptide immunization.

Page generated in 0.0584 seconds