Spelling suggestions: "subject:"framing (duilding)"" "subject:"framing (abuilding)""
21 |
Distributed plasticity analysis of steel building structural systemsAlemdar, Bulent Nedim 08 1900 (has links)
No description available.
|
22 |
Behaviour of cold-formed-steel-framed walls and floors in standard fire resistance tests /Alfawakhiri, Farid, January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2002. / Includes bibliographical references (p. 263-286). Also available in electronic format on the Internet.
|
23 |
Barocke Dachwerke, Decken und Gewölbe zur Baugeschichte und Baukonstruktion in Süddeutschland /Sachse, Hans-Joachim, January 1900 (has links)
Habilitationsschrift--Technische Universität, Berlin. / Includes bibliographical references (p. 141-143).
|
24 |
Barocke Dachwerke, Decken und Gewölbe zur Baugeschichte und Baukonstruktion in Süddeutschland /Sachse, Hans-Joachim, January 1900 (has links)
Habilitationsschrift--Technische Universität, Berlin. / Includes bibliographical references (p. 141-143).
|
25 |
Seismic performance of steel reduced beam section mement frame buildingsJin, Jun 01 July 2002 (has links)
No description available.
|
26 |
Behavior and design of metal building frames using general prismatic and web-tapered steel I-section membersKim, Yoon Duk 06 April 2010 (has links)
Metal building frames are typically designed using welded prismatic and web-tapered members with doubly-symmetric and/or singly-symmetric cross sections. Until recently, the base U.S. provisions for design of frames with web-tapered members were provided in the AISC ASD (1989) and LRFD (1999) Specifications. Unfortunately, these previous AISC provisions address only a small range of practical designs. As a result, metal building manufacturers have tended to develop their own methods for design of the wide range of nonprismatic member geometries and configurations encountered in practice.
This research develops new design procedures for design of frames using general prismatic members and web-tapered members. An equivalent prismatic member concept utilized in prior research and the prior AISC provisions is generalized to accommodate the broad range of member types and configurations commonly used in metal building industry. Furthermore, the new design procedures incorporate many of the improvements achieved in the AISC (2005&2010) Specifications to metal building frame design. These improvements include a new stability design method, the direct analysis method, more complete considerations of different column buckling limit states (flexural, torsional and flexural-torsional buckling), and improved axial load and flexural resistance provisions. This research develops practical design-based procedures for simplified calculation of the elastic buckling resistances of prismatic and web-tapered members to facilitate the application of the proposed design methods. In addition, this research performs a relatively comprehensive assessment of beam lateral torsional buckling (LTB) behavior and strength of prismatic and web-tapered members using refined virtual test simulation. It is demonstrated that web-tapered members behave in a comparable fashion to prismatic members. Based on the virtual simulation study, recommendations for potential improvement of the AISC LTB resistance equations are provided. Lastly, the strength behavior of several representative metal building frames is studied in detail using the same virtual test simulation capabilities developed and applied for the assessment of the beam LTB resistances.
|
27 |
Assessment of risk of disproportionate collapse of steel building structures exposed to multiple hazardsXu, Guoqing 13 May 2011 (has links)
Vulnerability of buildings to disproportionate (or progressive) collapse has
become an increasingly important performance issue following the collapses of the
Alfred P. Murrah Federal Building in Oklahoma City in 1995 and the World Trade
Center in 2001. Although considerable research has been conducted on this topic, there are still numerous unresolved research issues. This dissertation is aimed at developing structural models and analysis procedures for robustness assessment of steel building structures typical of construction practices in the United States, and assessing the performance of these typical structures.
Beam-column connections are usually the most vulnerable elements in steel buildings structures suffering local damage. Models of three typical frame connections for use in robustness assessment have been developed with different techniques, depending on the experimental data available to support such models. A probabilistic model of a pre-Northridge moment-resisting connection was developed through finite element simulations, in which the uncertainties in the initial flaw size, beam yield strength and fracture toughness of the weld were considered. A macro-model for a bolted T-stub connections was developed by considering the behavior of each connection element individually (i.e. T-stub, shear tab and panel zone) and assembling the elements to form a complete connection model, which was subsequently calibrated to experimental data. For modeling riveted connections in older steel buildings that might be candidates for rehabilitation, a new method was proposed to take advantage of available experimental data from tests of earthquake-resistant connections and to take into account the effects of the unequal compressive and tensile stiffnesses of top and bottom parts in a connection and catenary action.
These connection models were integrated into nonlinear finite element models of structural systems to allow the effect of catenary and other large-deformation action on the behavior of the frames and their connections following initial local structural damage to be assessed. The performance of pre-Northridge moment-resisting frames was assessed with both mean-centered deterministic and probabilistic assessment procedures; the significance of uncertainties in collapse assessment was examined by comparing the results from both procedures. A deterministic assessment of frames with full and partial-strength bolted T-stub connections was conducted considering three typical beam spans in both directions. The vulnerability of an older steel building with riveted connections was also analyzed deterministically. The contributions from unreinforced masonry infill panels and reinforced concrete slabs on the behavior of the building were investigated.
To meet the need for a relatively simple procedure for preliminary vulnerability assessment, an energy-based nonlinear static pushdown analysis procedure was developed. This procedure provides an alternative method of static analysis of disproportionate collapse vulnerability that can be used as an assessment tool for regular building frames subjected to local damage. Through modal analysis, dominant vibration modes of a damaged frame were first identified. The structure was divided into two parts, each of which had different vibration characteristics and was modeled by a single degree-of-freedom (SDOF) system separately. The predictions were found to be sufficiently close to the results of a nonlinear dynamic time history analysis (NTHA) that the method would be useful for collapse-resistant design of buildings with regular steel framing systems.
|
Page generated in 0.0839 seconds