Spelling suggestions: "subject:"franchetta hypersurfaces"" "subject:"zanchetta hypersurfaces""
1 |
Hipersuperfícies com Hessiano Nulo em P4Freitas, Gersica Valesca Lima de 15 August 2013 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-11T13:12:20Z
No. of bitstreams: 1
arquivototal.pdf: 1245634 bytes, checksum: e10d5add0ac7fd6fd557ebc178b4b142 (MD5) / Made available in DSpace on 2017-08-11T13:12:20Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1245634 bytes, checksum: e10d5add0ac7fd6fd557ebc178b4b142 (MD5)
Previous issue date: 2013-08-15 / Hesse claimed in [9] that an irreducible projective hypersurface in Pn de ned by an equation with vanishing hessian determinant is necessarily a cone. Gordan and Noether proved in [6] that this is true for n 3 and constructed counterexamples for every n 4. Gordan-Noether and Franchetta gave a classi cation of hypersurfaces in P4 with vanishing hessian and which are not cones, see [6] and [3]. Here we give a geometric approach to the classi cation proposed by Gordan-Noether, providing a classi cation of hypersurfaces with zero Hessian in P4, following the lines of Garbagnati-Reppeto in [4]. / Hesse afirmou em [9] que uma hipersuperfície projetiva irredutível em Pn definida por uma
equação com hessiano nulo necessariamente é um cone. Gordan e Noether provaram em [6] que
isso é verdade para n 3 e exibiram contra-exemplos para cada n 4. Gordan-Noether e
Franchetta deram uma classi ca c~ao das hipersuperf cies em P4 com hessiano nulo e que n~ao s~ao
cones, ver [6] e [3]. Aqui vamos dar uma abordagem geom etrica a classi ca c~ao das hipersuperf cies com hessiano nulo em P4 proposta por Gordan-Noether, seguindo as linhas de Garbagnati-Reppeto
em [4].
|
Page generated in 0.0843 seconds