• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical methods for solving linear ill-posed problems

Indratno, Sapto Wahyu January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Alexander G. Ramm / A new method, the Dynamical Systems Method (DSM), justified recently, is applied to solving ill-conditioned linear algebraic system (ICLAS). The DSM gives a new approach to solving a wide class of ill-posed problems. In Chapter 1 a new iterative scheme for solving ICLAS is proposed. This iterative scheme is based on the DSM solution. An a posteriori stopping rules for the proposed method is justified. We also gives an a posteriori stopping rule for a modified iterative scheme developed in A.G.Ramm, JMAA,330 (2007),1338-1346, and proves convergence of the solution obtained by the iterative scheme. In Chapter 2 we give a convergence analysis of the following iterative scheme: u[subscript]n[superscript]delta=q u[subscript](n-1)[superscript]delta+(1-q)T[subscript](a[subscript]n)[superscript](-1) K[superscript]*f[subscript]delta, u[subscript]0[superscript]delta=0, where T:=K[superscript]* K, T[subscript]a :=T+aI, q in the interval (0,1),\quad a[subscript]n := alpha[subscript]0 q[superscript]n, alpha_0>0, with finite-dimensional approximations of T and K[superscript]* for solving stably Fredholm integral equations of the first kind with noisy data. In Chapter 3 a new method for inverting the Laplace transform from the real axis is formulated. This method is based on a quadrature formula. We assume that the unknown function f(t) is continuous with (known) compact support. An adaptive iterative method and an adaptive stopping rule, which yield the convergence of the approximate solution to f(t), are proposed in this chapter.
2

Processamento digital de sinais aplicado a análise de distribuição de tempos de relaxação em sinais de ressonância magnética nuclear / Digital signal processing applied to relaxation times distribution analysis in nuclear magnetic resonance signals

Queiroz, Guylherme Emmanuel Tagliaferro de 03 June 2015 (has links)
Sabe-se que a relaxação de líquidos em meios porosos envolve três mecanismos principais: relaxação bulk, relaxação de superfície e difusão. Muitas vezes, os processos de relaxação de líquidos confinados em meios porosos são dominados pelo processo de relaxação de superfície e difusão do fluído. No chamado regime de difusão rápida, a relaxação de um único poro é comandada por uma função mono exponencial que depende, principalmente, da relação superfície-volume do poro, de modo que em um material poroso, isto é, contendo uma distribuição ampla de tamanho de poros, o sinal de decaimento de magnetização obtido por meio da ressonância magnética nuclear é formado pela soma de exponenciais com diferentes tempos de relaxação. O problema-chave abordado neste trabalho consiste, portanto, em obter por meio desse sinal de magnetização a distribuição dos tempos de relaxação que controlam o decaimento das funções mono-exponenciais. Matematicamente, esse sinal de decaimento de magnetização pode ser descrito na forma geral de uma equação integral de Fredholm do primeiro tipo, cuja solução é um reconhecido problema inverso mal-posto. As abordagens utilizadas na tentativa de solucionar o problema são oriundas de uma área conhecida como processamento digital de sinais, e os seguintes métodos são analisados e comparados neste trabalho: algoritmo dos mínimos quadrados médios com restrição de não negatividade (LMS-NN), algoritmo dos mínimos quadrados médios com restrição de não negatividade e regularizado (LMS-RNN), redes recorrentes de Hopfield e o já bem conhecido na solução de problemas inversos mal-postos, o algoritmo dos mínimos quadrados regularizado (LS-R). Os resultados obtidos no trabalho são bastante positivos, demonstrando que, além do LS-R, existem outras alternativas na solução do problema, que principalmente, permitem atestar as soluções obtidas por qualquer um dos algoritmos. / It is known that the relaxation of liquids in porous media involves three principal mechanisms: bulk relaxation, surface relaxation, and diffusion. Relaxation processes of confined fluids in porous media are often controlled by surface relaxation process and diffusion. In the so-called fast diffusion regime, the relaxation of a single pore is governed by a mono-exponential function that depends primarily on the relation surface-volume of the pore, so that in a porous medium, i.e, in a medium which contains a wide distribution of pore sizes, the signal of magnetization decay obtained by nuclear magnetic resonance is composed by a sum of exponentials controlled by different relaxation times. The main issue discussed in this work consists in obtaining the distribution of relaxation times that controls the decay of the mono-exponential functions that comprise the magnetization signal. Mathematically this signal of magnetization decay can be generally described as a Fredholm integral equation of the first kind, whose solution is a recognized ill-posed inverse problem. The approaches adopted to try to solve the problem come from an area known as digital signal processing, and the following methods analyzed and compared are: non-negative least mean square algorithm (NN-LMS), regularized and nonnegative nleast mean square algorithm (RNN-LMS), recurrent Hopfield networks and regularized least square algorithm (R-LS), acknowledged in the solution of ill-posed inverse problems. The results obtained are very positive, and show that in addition to R-LS there are other alternatives in the solution of the problem, which mainly allow to attest the results achieved through any of the algorithms.
3

Analysis of Swarm Behavior in Two Dimensions

Ryan, Louis 31 May 2012 (has links)
We investigate the steady state solutions that can exist for a two dimensional swarm of biological organisms, which have pairwise social interaction forces. The three steady states we investigate using a continuum model are a ribbon migrating swarm, a circular migrating swarm, and a milling swarm. We solve these numerically by reformulating the integral equation that arises from the continuum model as an energy minimization problem. For the ribbon migrating solution, we are able to determine an analytic solution from Carleman's equation which arises after an asymptotic expansion of the social interaction potential. Using this technique we are able to show the existence of a square root singularity that emerges at the boundary of the compactly supported swarm. The analytic solution agrees with the numerical solution for certain parameter values in the social interaction potential. We then demonstrate the existence of solutions for a migrating and milling circular swarm which contain a square root singularity. The milling swarm looks similar to the infinite ribbon, so we are able to use an asymptotic expansion of the potential to obtain an analytic solution in this case as well. The singularities in the density of the swarm suggest that the Morse potential should not be used for modeling biological swarming.
4

Processamento digital de sinais aplicado a análise de distribuição de tempos de relaxação em sinais de ressonância magnética nuclear / Digital signal processing applied to relaxation times distribution analysis in nuclear magnetic resonance signals

Guylherme Emmanuel Tagliaferro de Queiroz 03 June 2015 (has links)
Sabe-se que a relaxação de líquidos em meios porosos envolve três mecanismos principais: relaxação bulk, relaxação de superfície e difusão. Muitas vezes, os processos de relaxação de líquidos confinados em meios porosos são dominados pelo processo de relaxação de superfície e difusão do fluído. No chamado regime de difusão rápida, a relaxação de um único poro é comandada por uma função mono exponencial que depende, principalmente, da relação superfície-volume do poro, de modo que em um material poroso, isto é, contendo uma distribuição ampla de tamanho de poros, o sinal de decaimento de magnetização obtido por meio da ressonância magnética nuclear é formado pela soma de exponenciais com diferentes tempos de relaxação. O problema-chave abordado neste trabalho consiste, portanto, em obter por meio desse sinal de magnetização a distribuição dos tempos de relaxação que controlam o decaimento das funções mono-exponenciais. Matematicamente, esse sinal de decaimento de magnetização pode ser descrito na forma geral de uma equação integral de Fredholm do primeiro tipo, cuja solução é um reconhecido problema inverso mal-posto. As abordagens utilizadas na tentativa de solucionar o problema são oriundas de uma área conhecida como processamento digital de sinais, e os seguintes métodos são analisados e comparados neste trabalho: algoritmo dos mínimos quadrados médios com restrição de não negatividade (LMS-NN), algoritmo dos mínimos quadrados médios com restrição de não negatividade e regularizado (LMS-RNN), redes recorrentes de Hopfield e o já bem conhecido na solução de problemas inversos mal-postos, o algoritmo dos mínimos quadrados regularizado (LS-R). Os resultados obtidos no trabalho são bastante positivos, demonstrando que, além do LS-R, existem outras alternativas na solução do problema, que principalmente, permitem atestar as soluções obtidas por qualquer um dos algoritmos. / It is known that the relaxation of liquids in porous media involves three principal mechanisms: bulk relaxation, surface relaxation, and diffusion. Relaxation processes of confined fluids in porous media are often controlled by surface relaxation process and diffusion. In the so-called fast diffusion regime, the relaxation of a single pore is governed by a mono-exponential function that depends primarily on the relation surface-volume of the pore, so that in a porous medium, i.e, in a medium which contains a wide distribution of pore sizes, the signal of magnetization decay obtained by nuclear magnetic resonance is composed by a sum of exponentials controlled by different relaxation times. The main issue discussed in this work consists in obtaining the distribution of relaxation times that controls the decay of the mono-exponential functions that comprise the magnetization signal. Mathematically this signal of magnetization decay can be generally described as a Fredholm integral equation of the first kind, whose solution is a recognized ill-posed inverse problem. The approaches adopted to try to solve the problem come from an area known as digital signal processing, and the following methods analyzed and compared are: non-negative least mean square algorithm (NN-LMS), regularized and nonnegative nleast mean square algorithm (RNN-LMS), recurrent Hopfield networks and regularized least square algorithm (R-LS), acknowledged in the solution of ill-posed inverse problems. The results obtained are very positive, and show that in addition to R-LS there are other alternatives in the solution of the problem, which mainly allow to attest the results achieved through any of the algorithms.

Page generated in 0.1257 seconds