Spelling suggestions: "subject:"free conergy off 1interaction"" "subject:"free conergy off 3dinteraction""
1 |
Mitigating fouling of heat exchangers with fluoropolymer coatingsMagens, Ole Mathis January 2019 (has links)
Fouling is a chronic problem in many heat transfer systems and results in the need for frequent heat exchanger (HEX) cleaning. In the dairy industry, the associated operating cost and environmental impact are substantial. Antifouling coatings are one mitigation option. In this work, the fouling behaviour of fluoropolymer, polypropylene and stainless steel heat transfer surfaces in processing raw milk and whey protein solution are studied. Methodologies to assess the economics of antifouling coatings are developed and applied. Two experimental apparatuses were designed and constructed to study fouling at surface temperatures around 90 °C. A microfluidic system with a 650 x 2000 µm flow channel enables fouling studies to be carried out by recirculating 2 l of raw milk. The apparatus operates in the laminar flow regime and the capability to probe the local composition of delicate fouling deposit $\textit{in-situ}$ with histological techniques employing confocal laser scanning microscopy. A larger bench-scale apparatus with a 10 x 42 mm flow channel was built to recirculate 17 l of solution in the turbulent flow regime which is more representative of conditions in an industrial plate HEX. Experimental results demonstrate that fluoropolymer coatings can reduce fouling masses from raw milk and whey protein solution by up to 50 %. Surface properties affect the structure and composition of the deposit. At the interface with apolar surfaces raw milk fouling layers are high in protein, whereas a strongly attached mineral-rich layer is present at the interface with steel. Whey protein deposits generated on apolar surfaces are more spongy and have a lower thermal conductivity and/or density than deposits on steel. The attraction of denatured protein towards apolar surfaces and the formation of a calcium phosphate layer on steel at later stages of fouling are explained with arguments based on the interfacial free energy of these materials in water. The financial attractiveness of coatings is considered for HEX subject to linearly and asymptotically increasing fouling resistance and using a spatially resolved fouling model. An explicit solution to the cleaning-scheduling problem is presented for the case of equal heat capacity flow rates in a counter-current HEX. Scenarios where the use of coatings may be attractive or where there is no financial benefit in cleaning a fouled exchanger are identified. Finally, experimental data are used to estimate the economic potential of fluoropolymer coated HEXs in the ultra-high-temperature treatment of milk. In the considered case, the value of a fluoropolymer coating inferred from the reduction in fouling is estimated to be around 2000 US$/m².
|
2 |
Flotation using cellulose-based chemicalsHartmann, R. (Robert) 14 August 2018 (has links)
Abstract
Flotation is a well-known and widely used technique for the separation of particles smaller than 250 µm, but efficient performance requires the use of various synthetic chemicals which can potentially damage the health of humans and animals and pollute the environment. Consequently, their replacement through a more environment-friendly and sustainable alternative has been demanded. One promising candidate is cellulose, which is an abundant natural polymer that is environment-friendly and can be treated chemically and physically to yield tailored properties and thus a potential for use in processes such as flotation.
This work focuses on the use of cellulose-based reagents in flotation processes to replace the often harmful conventional reagents derived from mineral oil, plant oils or animal fats. The physico-chemical properties of cellulose differ from those of conventional reagents, leading to differences in performance during flotation. In particular, the chemical and morphological heterogeneity of cellulose affects its properties and thus its interaction with minerals and water. Consequently, its use requires the study of the fundamentals of flotation and their application including the physico-chemical heterogeneity of cellulose to determine the optimum conditions and enable efficient performance. This work focuses on the determination of the thermodynamic surface energetics of solid particles and changes in this after reagent adsorption, using the inverse gas chromatography technique in a dry atmosphere. Furthermore, interactions between cellulose and minerals immersed in water are investigated using the DLVO theory, the interaction forces between cellulose and the minerals being derived and correlated with flotability. The importance of free surface charges is then considered by investigating the electric surface potential of cellulose-coated minerals in connection with particle-bubble attachment efficiency. At the same time, conventional amphiphilic reagents are used and its performances are related to cellulose-based reagents. / Tiivistelmä
Vaahdotus on kaivannaisteollisuudessa laajasti käytössä oleva prosessi, jonka avulla saadaan erotettua tehokkaasti pieniä, alle 250 µm kokoisia partikkeleita. Vaahdotuksen apuaineena käytetään erilaisia synteettisiä kemikaaleja, jotka voivat aiheuttaa harmia ympäristölle. Siksi niiden korvaaminen ympäristöystävällisemmillä vaihtoehdoilla on tärkeää. Yksi lupaava vaihtoehto korvaavaksi materiaaliksi on selluloosa. Selluloosa on uusiutuva ja ympäristöystävällinen luonnonpolymeeri, josta voidaan valmistaa kemiallisesti ja fysikaalisesti käsittelemällä erilaisia biokemikaaleja. Näitä voidaan soveltaa erilaisissa prosesseissa, myös vaahdotuksessa.
Tässä työssä keskitytään selluloosapohjaisten kemikaalien käyttöön vaahdotuksessa tavanomaisten, usein haitallisten synteettisten kemikaalien korvaamiseksi. Selluloosan fysikaaliskemialliset ominaisuudet eroavat synteettisten vaahdotuskemikaalien ominaisuuksista, mikä vaikuttaa niiden vuorovaikutukseen mineraalien ja veden kanssa. Erityisesti selluloosan kemiallinen ja morfologinen heterogeenisuus on keskeinen tekijä. Selluloosan hyödyntäminen tulevaisuuden vaahdotuskemikaalina edellyttää selluloosan ja mineraalien vuorovaikutuksen syvällistä ymmärtämistä.
Tässä työssä tutkitaan selluloosan ja mineraalien vuorovaikutusta sekä IGC-menetelmän avulla, että DLVO-teorian että pintavarausmittausten avulla. Lisäksi tutkitaan selluloosan ja mineraalien vuorovaikutusvoimien yhteyttä vaahdotusprosessin onnistumiseen ja saavutettuja tuloksia verrataan kaupallisten reagenssien toimintaan.
|
Page generated in 0.4707 seconds