Spelling suggestions: "subject:"freeform deformation"" "subject:"freeform eformation""
1 |
Morphing-Based Shape Optimization in Computational Fluid DynamicsROUSSEAU, Yannick, MEN'SHOV, Igor, NAKAMURA, Yoshiaki 04 May 2007 (has links)
No description available.
|
2 |
Real-time Rendering of Burning Objects in Video GamesAmarasinghe, Dhanyu Eshaka 08 1900 (has links)
In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain the engaging player's willing suspension of disbelief. I have implemented and tested my method on a relatively modest GPU using CUDA. My experiments conclude this method gives a believable visual effect while using small fraction of CPU and GPU resources.
|
3 |
Otimização de forma de cascas via deformação livre de forma baseado em NURBS / Shape optimization of shell via free-form deformation NURBSbasedEspath, Luis Felipe da Rosa January 2009 (has links)
Neste trabalho buscou-se consolidar a união entre três áreas do conhecimento: a parametrização de curvas e superfícies do tipo B-spline racionais não-uniformes (NURBS), a otimização matemática e a análise estrutural por elementos finitos. A união destas três áreas é realizada neste trabalho através da otimização de formas de cascas, devido ao fato de que as características mecânicas dos materiais devem refletir-se na forma da estrutura e sua distribuição de espessura expressando um máximo desempenho. Estas variáveis, forma e distribuição de espessura, possuem um rol dominante nos projetos de engenharia, já que mínimas quantidades de materiais, uma frequência específica, um estado puro de tensões de membrana são típicos objetivos de projeto. Neste contexto, obter a forma e a distribuição de espessura adequadas são conceitos intrínsecos à otimização estrutural. Portanto, implementaram-se técnicas para modificar a geometria de cascas, sem perder a parametrização, sem a necessidade de gerar uma nova malha de elementos finitos ao se modificar a forma e ainda ter controle sobre a distorção da malha para evitar erros numéricos inaceitáveis. A modificação de forma é fomentada pelo código de otimização, programação quadrática sequencial (SQP), motivado pelas análises da casca por elementos finitos. A modificação de forma é realizada pela técnica de deformação livre de forma (free-form deformation) com a parametrização NURBS. Nos resultados da otimização de formas de cascas obtiveram-se cascas com alto desempenho estrutural e esteticamente agradáveis. / Consolidation of the link among three fields, curves and surfaces described by non-uniform rational B-spline (NURBS), mathematical optimization and finite element structural analysis, applied to shape optimization of shells, is the main objective of this work. Shape optimization of shells are performed taking into account the fact that the material mechanical caracteristics influence the structural shape and the thickness variation in order to obtain the best performace. These two variables, shape and thickness variation, have an essential role considering that the minimum material quantities, a specific frequency and a pure membrane stress state are typical design objectives. Suitable shapes and thickness variation are intrinsic concepts of structural optimization. Therefore, some techniques were implemented to modify the shell geometry conserving the same parameterization without a new finite element mesh generation and controlling mesh distortion in order to avoid relevant numerical errors. The shape modification is conducted by the optimization code and it is based in the data obtained by finite element analysis. In this work the optimization procedure is performed using a Sequential Quadratic Programming (SQP) algorithm, while the shape modification is carried out by the freeform deformation technique, based on NURBS parameterization. As a consequence of the shape optimization, shells with high structural performance and esthetically beautiful were obtained.
|
4 |
Otimização de forma de cascas via deformação livre de forma baseado em NURBS / Shape optimization of shell via free-form deformation NURBSbasedEspath, Luis Felipe da Rosa January 2009 (has links)
Neste trabalho buscou-se consolidar a união entre três áreas do conhecimento: a parametrização de curvas e superfícies do tipo B-spline racionais não-uniformes (NURBS), a otimização matemática e a análise estrutural por elementos finitos. A união destas três áreas é realizada neste trabalho através da otimização de formas de cascas, devido ao fato de que as características mecânicas dos materiais devem refletir-se na forma da estrutura e sua distribuição de espessura expressando um máximo desempenho. Estas variáveis, forma e distribuição de espessura, possuem um rol dominante nos projetos de engenharia, já que mínimas quantidades de materiais, uma frequência específica, um estado puro de tensões de membrana são típicos objetivos de projeto. Neste contexto, obter a forma e a distribuição de espessura adequadas são conceitos intrínsecos à otimização estrutural. Portanto, implementaram-se técnicas para modificar a geometria de cascas, sem perder a parametrização, sem a necessidade de gerar uma nova malha de elementos finitos ao se modificar a forma e ainda ter controle sobre a distorção da malha para evitar erros numéricos inaceitáveis. A modificação de forma é fomentada pelo código de otimização, programação quadrática sequencial (SQP), motivado pelas análises da casca por elementos finitos. A modificação de forma é realizada pela técnica de deformação livre de forma (free-form deformation) com a parametrização NURBS. Nos resultados da otimização de formas de cascas obtiveram-se cascas com alto desempenho estrutural e esteticamente agradáveis. / Consolidation of the link among three fields, curves and surfaces described by non-uniform rational B-spline (NURBS), mathematical optimization and finite element structural analysis, applied to shape optimization of shells, is the main objective of this work. Shape optimization of shells are performed taking into account the fact that the material mechanical caracteristics influence the structural shape and the thickness variation in order to obtain the best performace. These two variables, shape and thickness variation, have an essential role considering that the minimum material quantities, a specific frequency and a pure membrane stress state are typical design objectives. Suitable shapes and thickness variation are intrinsic concepts of structural optimization. Therefore, some techniques were implemented to modify the shell geometry conserving the same parameterization without a new finite element mesh generation and controlling mesh distortion in order to avoid relevant numerical errors. The shape modification is conducted by the optimization code and it is based in the data obtained by finite element analysis. In this work the optimization procedure is performed using a Sequential Quadratic Programming (SQP) algorithm, while the shape modification is carried out by the freeform deformation technique, based on NURBS parameterization. As a consequence of the shape optimization, shells with high structural performance and esthetically beautiful were obtained.
|
5 |
Otimização de forma de cascas via deformação livre de forma baseado em NURBS / Shape optimization of shell via free-form deformation NURBSbasedEspath, Luis Felipe da Rosa January 2009 (has links)
Neste trabalho buscou-se consolidar a união entre três áreas do conhecimento: a parametrização de curvas e superfícies do tipo B-spline racionais não-uniformes (NURBS), a otimização matemática e a análise estrutural por elementos finitos. A união destas três áreas é realizada neste trabalho através da otimização de formas de cascas, devido ao fato de que as características mecânicas dos materiais devem refletir-se na forma da estrutura e sua distribuição de espessura expressando um máximo desempenho. Estas variáveis, forma e distribuição de espessura, possuem um rol dominante nos projetos de engenharia, já que mínimas quantidades de materiais, uma frequência específica, um estado puro de tensões de membrana são típicos objetivos de projeto. Neste contexto, obter a forma e a distribuição de espessura adequadas são conceitos intrínsecos à otimização estrutural. Portanto, implementaram-se técnicas para modificar a geometria de cascas, sem perder a parametrização, sem a necessidade de gerar uma nova malha de elementos finitos ao se modificar a forma e ainda ter controle sobre a distorção da malha para evitar erros numéricos inaceitáveis. A modificação de forma é fomentada pelo código de otimização, programação quadrática sequencial (SQP), motivado pelas análises da casca por elementos finitos. A modificação de forma é realizada pela técnica de deformação livre de forma (free-form deformation) com a parametrização NURBS. Nos resultados da otimização de formas de cascas obtiveram-se cascas com alto desempenho estrutural e esteticamente agradáveis. / Consolidation of the link among three fields, curves and surfaces described by non-uniform rational B-spline (NURBS), mathematical optimization and finite element structural analysis, applied to shape optimization of shells, is the main objective of this work. Shape optimization of shells are performed taking into account the fact that the material mechanical caracteristics influence the structural shape and the thickness variation in order to obtain the best performace. These two variables, shape and thickness variation, have an essential role considering that the minimum material quantities, a specific frequency and a pure membrane stress state are typical design objectives. Suitable shapes and thickness variation are intrinsic concepts of structural optimization. Therefore, some techniques were implemented to modify the shell geometry conserving the same parameterization without a new finite element mesh generation and controlling mesh distortion in order to avoid relevant numerical errors. The shape modification is conducted by the optimization code and it is based in the data obtained by finite element analysis. In this work the optimization procedure is performed using a Sequential Quadratic Programming (SQP) algorithm, while the shape modification is carried out by the freeform deformation technique, based on NURBS parameterization. As a consequence of the shape optimization, shells with high structural performance and esthetically beautiful were obtained.
|
6 |
Simultaneous real-time object recognition and pose estimation for artificial systems operating in dynamic environmentsVan Wyk, Frans Pieter January 2013 (has links)
Recent advances in technology have increased awareness of the necessity for automated systems in
people’s everyday lives. Artificial systems are more frequently being introduced into environments
previously thought to be too perilous for humans to operate in. Some robots can be used to extract
potentially hazardous materials from sites inaccessible to humans, while others are being developed
to aid humans with laborious tasks.
A crucial aspect of all artificial systems is the manner in which they interact with their immediate surroundings.
Developing such a deceivingly simply aspect has proven to be significantly challenging, as
it not only entails the methods through which the system perceives its environment, but also its ability
to perform critical tasks. These undertakings often involve the coordination of numerous subsystems,
each performing its own complex duty. To complicate matters further, it is nowadays becoming
increasingly important for these artificial systems to be able to perform their tasks in real-time.
The task of object recognition is typically described as the process of retrieving the object in a database
that is most similar to an unknown, or query, object. Pose estimation, on the other hand, involves
estimating the position and orientation of an object in three-dimensional space, as seen from an observer’s
viewpoint. These two tasks are regarded as vital to many computer vision techniques and and
regularly serve as input to more complex perception algorithms.
An approach is presented which regards the object recognition and pose estimation procedures as
mutually dependent. The core idea is that dissimilar objects might appear similar when observed
from certain viewpoints. A feature-based conceptualisation, which makes use of a database, is implemented
and used to perform simultaneous object recognition and pose estimation. The design
incorporates data compression techniques, originally suggested by the image-processing community,
to facilitate fast processing of large databases.
System performance is quantified primarily on object recognition, pose estimation and execution time
characteristics. These aspects are investigated under ideal conditions by exploiting three-dimensional
models of relevant objects. The performance of the system is also analysed for practical scenarios
by acquiring input data from a structured light implementation, which resembles that obtained from
many commercial range scanners.
Practical experiments indicate that the system was capable of performing simultaneous object recognition
and pose estimation in approximately 230 ms once a novel object has been sensed. An average
object recognition accuracy of approximately 73% was achieved. The pose estimation results were
reasonable but prompted further research. The results are comparable to what has been achieved using
other suggested approaches such as Viewpoint Feature Histograms and Spin Images. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Electrical, Electronic and Computer Engineering / unrestricted
|
7 |
Rigid and Non-rigid Point-based Medical Image RegistrationParra, Nestor Andres 13 November 2009 (has links)
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
|
8 |
Simutaneous real-time object recognition and pose estimation for artificial systems operating in dynamic environmentsVan Wyk, Frans-Pieter January 2013 (has links)
Recent advances in technology have increased awareness of the necessity for automated systems in
people’s everyday lives. Artificial systems are more frequently being introduced into environments
previously thought to be too perilous for humans to operate in. Some robots can be used to extract
potentially hazardous materials from sites inaccessible to humans, while others are being developed
to aid humans with laborious tasks.
A crucial aspect of all artificial systems is the manner in which they interact with their immediate surroundings.
Developing such a deceivingly simply aspect has proven to be significantly challenging, as
it not only entails the methods through which the system perceives its environment, but also its ability
to perform critical tasks. These undertakings often involve the coordination of numerous subsystems,
each performing its own complex duty. To complicate matters further, it is nowadays becoming
increasingly important for these artificial systems to be able to perform their tasks in real-time.
The task of object recognition is typically described as the process of retrieving the object in a database
that is most similar to an unknown, or query, object. Pose estimation, on the other hand, involves
estimating the position and orientation of an object in three-dimensional space, as seen from an observer’s
viewpoint. These two tasks are regarded as vital to many computer vision techniques and regularly serve as input to more complex perception algorithms.
An approach is presented which regards the object recognition and pose estimation procedures as
mutually dependent. The core idea is that dissimilar objects might appear similar when observed
from certain viewpoints. A feature-based conceptualisation, which makes use of a database, is implemented
and used to perform simultaneous object recognition and pose estimation. The design
incorporates data compression techniques, originally suggested by the image-processing community,
to facilitate fast processing of large databases.
System performance is quantified primarily on object recognition, pose estimation and execution time
characteristics. These aspects are investigated under ideal conditions by exploiting three-dimensional
models of relevant objects. The performance of the system is also analysed for practical scenarios
by acquiring input data from a structured light implementation, which resembles that obtained from
many commercial range scanners.
Practical experiments indicate that the system was capable of performing simultaneous object recognition
and pose estimation in approximately 230 ms once a novel object has been sensed. An average
object recognition accuracy of approximately 73% was achieved. The pose estimation results were
reasonable but prompted further research. The results are comparable to what has been achieved using
other suggested approaches such as Viewpoint Feature Histograms and Spin Images. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Electrical, Electronic and Computer Engineering / unrestricted
|
9 |
Sketch-based intuitive 3D model deformationsBao, Xin January 2014 (has links)
In 3D modelling software, deformations are used to add, to remove, or to modify geometric features of existing 3D models to create new models with similar but slightly different details. Traditional techniques for deforming virtual 3D models require users to explicitly define control points and regions of interest (ROIs), and to define precisely how to deform ROIs using control points. The awkwardness of defining these factors in traditional 3D modelling software makes it difficult for people with limited experience of 3D modelling to deform existing 3D models as they expect. As applications which require virtual 3D model processing become more and more widespread, it becomes increasingly desirable to lower the "difficulty of use" threshold of 3D model deformations for users. This thesis argues that the user experience, in terms of intuitiveness and ease of use, of a user interface for deforming virtual 3D models, can be greatly enhanced by employing sketch-based 3D model deformation techniques, which require the minimal quantities of interactions, while keeping the plausibility of the results of deformations as well as the responsiveness of the algorithms, based on modern home grade computing devices. A prototype system for sketch-based 3D model deformations is developed and implemented to support this hypothesis, which allows the user to perform a deformation using a single deforming stroke, eliminating the need to explicitly select control points, the ROI and the deforming operation. GPU based accelerations have been employed to optimise the runtime performance of the system, so that the system is responsive enough for real-time interactions. The studies of the runtime performance and the usability of the prototype system are conducted to provide evidence to support the hypothesis.
|
10 |
Metody FFD / FFD methodsNovák, Jiří January 2017 (has links)
The diploma thesis deals with the topic of free-form deformations. The main goal of this work were elaboration of theoretical knowledge about this issue and the programming of selected methods od free-form deformations. The first part describes the required spline theory, matrix calculus and free-form deformations. The resulting version shows three programs. The first program compares the selected free-form deformation methods to the example of the 4x4 control point grid. The second program serves as a generalization for the general case of grid of control points. The last program is based on direct manipulation of arbitrary surface point and following recomputation of the control points to obtain demanded shape.
|
Page generated in 0.1002 seconds