• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Temperature on the SWCC and Estimation of the SWCC from Moisture Profile under a Controlled Thermal Gradient

Roshani, Pedram 08 May 2014 (has links)
In many situations, the upper layers of soil above the ground water table are in a state of unsaturated condition. Although unsaturated soils are found throughout the world, they are predominant in arid or semi-arid regions. In these areas, the soil water characteristic curve (SWCC) which relates the water content to the matric suction could be used as key tool to implement the mechanics of unsaturated soils into the designs of geotechnical structures such as dams, embankments, pavements, canals, and foundations. Several experimental techniques are available for determining the SWCC in a laboratory environment. However, these experimental techniques are expensive, time consuming typically requiring days or weeks, depending on the soil type, and demanding intricate testing equipment. Due to these reasons, there has been a growing interest to find other means for estimating SWCC and encourage the adoption of unsaturated soils mechanics in geotechnical engineering practice. Several methods exist to indirectly estimate the SWCC from basic soil properties. Some may include statistical estimation of the water content at selected matric suction values, correlation of soil properties with the fitting parameters of an analytical equation that represents the SWCC, estimation of the SWCC using a physics-based conceptual model, and artificial intelligence methods such as neural networks or genetic programming. However, many studies have shown that environmental effects such as temperature, soil structure, initial water content, void ratio, stress history, compaction method, etc. can also affect the SWCC. This means that the estimation SWCC from set of conditions may not reliably predict the SWCC in other conditions. Due to this reason, it is crucial for engineers involved with unsaturated soils to take into account all the factors that influence the SWCC. The two key objectives of the present thesis are the development of a method based on first principles, using the capillary rise theory, to predict the variation of the SWCC as a function of temperature, as well as developing a technique for the prediction of the fixed parameters of a well-known function representing the SWCC based on basic soil properties together with the moisture profile of a soil column subjected to a known temperature gradient. A rational approach using capillary rise theory and the effect of temperature on surface tension and liquid density is developed to study the relation between temperature and the parameters of the Fredlund and Xing (1994) equation. Several tests, using a Tempe cell submerged in a controlled temperature bath, were performed to determine the SWCC of two coarse-grained soils at different temperatures. A good comparison between the predicted SWCC at different temperatures using the proposed model and the measured values from the Tempe cell test results is achieved. Within the scope of this thesis, a separate testing program was undertaken to indirectly estimate the SWCC of the same two coarse-grained soils from the measurement of their steady state soil-moisture profile while subjected to a fixed temperature differences. The water potential equation in the liquid and vapor phases is used to analyses the steady state flow conditions in the unsaturated soil. A good comparison is obtained for the SWCC estimated using this technique with the SWCC measured used a Tempe cell submerged in a controlled temperature bath. The results of this study indicate that knowledge of the moisture content of a soil specimen under a constant thermal gradient and basic soil properties can be used to estimate the SWCC of the soil at the desired temperature.
2

The Effect of Temperature on the SWCC and Estimation of the SWCC from Moisture Profile under a Controlled Thermal Gradient

Roshani, Pedram January 2014 (has links)
In many situations, the upper layers of soil above the ground water table are in a state of unsaturated condition. Although unsaturated soils are found throughout the world, they are predominant in arid or semi-arid regions. In these areas, the soil water characteristic curve (SWCC) which relates the water content to the matric suction could be used as key tool to implement the mechanics of unsaturated soils into the designs of geotechnical structures such as dams, embankments, pavements, canals, and foundations. Several experimental techniques are available for determining the SWCC in a laboratory environment. However, these experimental techniques are expensive, time consuming typically requiring days or weeks, depending on the soil type, and demanding intricate testing equipment. Due to these reasons, there has been a growing interest to find other means for estimating SWCC and encourage the adoption of unsaturated soils mechanics in geotechnical engineering practice. Several methods exist to indirectly estimate the SWCC from basic soil properties. Some may include statistical estimation of the water content at selected matric suction values, correlation of soil properties with the fitting parameters of an analytical equation that represents the SWCC, estimation of the SWCC using a physics-based conceptual model, and artificial intelligence methods such as neural networks or genetic programming. However, many studies have shown that environmental effects such as temperature, soil structure, initial water content, void ratio, stress history, compaction method, etc. can also affect the SWCC. This means that the estimation SWCC from set of conditions may not reliably predict the SWCC in other conditions. Due to this reason, it is crucial for engineers involved with unsaturated soils to take into account all the factors that influence the SWCC. The two key objectives of the present thesis are the development of a method based on first principles, using the capillary rise theory, to predict the variation of the SWCC as a function of temperature, as well as developing a technique for the prediction of the fixed parameters of a well-known function representing the SWCC based on basic soil properties together with the moisture profile of a soil column subjected to a known temperature gradient. A rational approach using capillary rise theory and the effect of temperature on surface tension and liquid density is developed to study the relation between temperature and the parameters of the Fredlund and Xing (1994) equation. Several tests, using a Tempe cell submerged in a controlled temperature bath, were performed to determine the SWCC of two coarse-grained soils at different temperatures. A good comparison between the predicted SWCC at different temperatures using the proposed model and the measured values from the Tempe cell test results is achieved. Within the scope of this thesis, a separate testing program was undertaken to indirectly estimate the SWCC of the same two coarse-grained soils from the measurement of their steady state soil-moisture profile while subjected to a fixed temperature differences. The water potential equation in the liquid and vapor phases is used to analyses the steady state flow conditions in the unsaturated soil. A good comparison is obtained for the SWCC estimated using this technique with the SWCC measured used a Tempe cell submerged in a controlled temperature bath. The results of this study indicate that knowledge of the moisture content of a soil specimen under a constant thermal gradient and basic soil properties can be used to estimate the SWCC of the soil at the desired temperature.

Page generated in 0.1124 seconds