Spelling suggestions: "subject:"bfrequency invariant"" "subject:"bfrequency envariant""
1 |
Theory and application of broadband frequency invariant beamformingWard, Darren Brett, db_ward@hotmail.com January 1996 (has links)
In many engineering applications, including radar, sonar, communications and seismology, the direction of impinging signal wavefronts can be used to discriminate between competing sources. Often these source signals cover a wide bandwidth and conventional narrowband beamforming techniques are ineffective, since spatial resolution varies significantly across the band. In this thesis we consider the problem of beamforming for broadband signals, primarily when the spatial response remains constant as a function of frequency. This is called a frequency invariant beamformer (FIB).¶
Rather than applying the numerical technique of multi-parameter optimisation to solve for the beamformer parameters, we attempt to address the fundamental nature of the FIB problem. The general philosophy is to use a theoretical continuous sensor to derive relationships between a desired FI beampattern and the required signal processing structure. Beamforming using an array of discrete sensors can then be formulated as an approximation problem. This approach reveals a natural structure to the FIB which is otherwise buried in a numerical optimisation procedure.¶
Measured results from a microphone array are presented to verify that the simple FIB structure can be successfully implemented. We then consider imposing broadband pattern nulls in the FI beampattern, and show that (i) it is possible to impose an exact null which is present over all frequencies, and (ii) it is possible to calculate a priori how many constraints are required to achieve a null of a given depth in a FIB. We also show that the FIB can be applied to the problem of broadband direction of arrival (DOA) estimation and provides computational advantages over other broadband DOA estimators.¶
Through the theoretical continuous sensor approach, we show that the FIB theory can be generalised to the problem of designing a general broadband beamformer (GBB) which realizes a broadband angle-versus-frequency beampattern specification. Coupled with a technique for radial beampattern transformation, the GBB can be applied to a wide class of problems covering both nearfield beamforming (in which the shape of the impinging wavefront must be considered and farfield beamforming (which is simplified by the assumption of planar wavefronts) for a broadband beampattern specified over both angle and frequency.
|
2 |
Frequency-Invariant Broadband Antenna Array Beamformer with Linearly Constrained Adaptation AlgorithmsYe, Yi-Jyun 31 August 2005 (has links)
Spatial processing that exploits the diversity provided by smart antenna arrays, in which the adaptive beamformer is employed, is another alternative to increase the efficiency of wireless system capacity and performance without allocating additional frequency spectrum. An array beamformer is a processor used in conjunction with an array of sensors to provide a versatile form of spatial filtering; it can be designed to form main lobe in direction corresponding to the desired source and nulling the interferences from others direction. They are two types of adaptive array beamformer structures, viz., broadband and narrowband array structures. To deal with the wideband desired signal or interferences the broadband array beamformer is preferred. For broadband interferences suppression, many adaptive array beamforming algorithms, based on the linearly constrained have been extensively used. In this thesis, the beamspace approach for designing the broadband antenna array beamformer, with frequency invariant character, is devised and implemented with the sliding window linearly constrained RLS (SW-LC-RLS) algorithm, to deal with the broadband moving jammers (or interferences) suppression. Also, to combat the pointing error effect of desired user¡¦s look direction, the derivative constraint is adopted for devising the derivative SW-LC-RLS beamforming algorithm for broadband moving jammers suppression. Computer simulation results confirmed that the proposed scheme is more robust against the moving jammers over the conventional algorithms. It can be applied to the existing wideband wireless communications systems to achieve desired performance for supporting high data rate communication services.
|
3 |
Frequency Invariant Beamforming And Its Application To Wideband Direction Of Arrival Estimation A Thesis Submitted To The Graduate School Of Natural And Applied Sciences Of Middle East Technical University By Eren Babatas In Partial Fullfillment OBabatas, Eren 01 September 2008 (has links) (PDF)
In this thesis the direction of arrival estimation of wideband signals using frequency
invariant beamforming method is examined. The difficulty with the direction of
arrival estimation of wideband signals is that it is not possible to obtain a single
covariance matrix valid for the whole frequency spectrum of the signal. There are
various methods proposed in the literature to overcome this difficulty. The
common aim of all the methods is to obtain a composite covariance matrix for the
overall band of the signal.
In this thesis, we concentrate on a method in [12]. This method is based on a
beamforming technique that provides frequency invariant beams in the band of
interest. Therefore there is no need for frequency decomposition as it is done with
the other wideband methods. A comparison of the frequency invariant beamforming
method with coherent signal subspace methods and narrow band methods is also
given.
|
Page generated in 0.0396 seconds