• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioavailability and bioremediation of heavy metals and nutrients in cultivated and fallowed soils following irrigation with treated wastewater

Phadu, Moedisha Lorraine January 2019 (has links)
Thesis (MSc. Agriculture (Soil Science)) -- University of Limpopo, 2019 / Global shortage of fresh quality water has led to the use of treated wastewater in arid and semi-arid regions. Although, the treated wastewater has proven to be the best solution in ameliorating pressures brought by water shortage, it contains toxic heavy metals, some in high concentrations that could possibly pose health risks and degrade soil quality. Therefore, the objectives of the study were to determine the vertical and horizontal distribution of bioavailable heavy metals on virgin, cultivated and fallowed fields and to investigate the bioremediation abilities of selected soil microbes on non-essential heavy metals in cultivated and fallowed soils following irrigation with treated wastewater at University of Limpopo (UL) Experimental Farm. Three fields, namely, virgin field (VF), cultivated field (CF) and fallowed field (FF), each being 6.4 ha, were each divided into 40 equal grids, equivalent to 40 m × 40 m, which were used in vertical assessment of heavy metals. Soil profiles were established inside each grid and soil samples collected at 0-20; 20-40 and 40-60 cm soil depth for further laboratory analysis. The soil samples were analyzed for basic soil physico-chemicals, namely, particle size distribution, soil pH (H20 and KCl), electrical conductivity (EC), reduction potential (Eh), organic carbon (OC) and cation exchange capacity (CEC). Five essential heavy metals namely zinc (Zn), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn) and five non-essential heavy metals, namely, arsenic (As), chromium (Cr), lead (Pb), aluminium (Al), and cadmium (Cd), were also extracted from the soil samples. Heavy metal resistant Gram-negative (–) and Gram-positive (+) bacteria were isolated from the soil and identified as Providencia rettgeri (–), Enterobacter cloacae (–), Bacillus cereus (+) and Arthrobacter aurescens (+). xix The isolated bacteria were cultured and inoculated in heavy metal-contaminated soils and incubated for 12 weeks to bioremediate the non-essential heavy metals. Results obtained suggested that the treatments had no significant (P ≤ 0.05) effects on vertical distribution of all the essential and non-essential heavy metals among the three fields. However, on average Co was above the permissible level at 53 mg/kg in CF at 0-20 cm and although all the other essential heavy metals increased, they were still within the permissible levels. The concentration of As was also above the permissible levels in CF with an average concentration of 4.30 mg/kg. Cadmium levels were also above the permissible levels in CF with an average concentration of 1.146 mg/kg in CF and this increased by 0.46 units from VF which had an average value of 1 mg/kg. However, fallowing reduced Cd to 0.51 mg/kg which was below or within the expected limits in soil previously irrigated with treated waste water. Gram-positive bacteria reduced more concentrations of non-essential heavy metals separately and combined, especially in the fallowed field. Irrigation with treated wastewater has shown to have both negative and positive effects on the concentration of essential and non-essential heavy metals in cultivated and fallowed fields. Bioremediation coupled with fallowing has been proven to be the best solution in ameliorating heavy metal toxicity while naturally improving the quality of the soil. / National Research Foundation (NRF)

Page generated in 0.086 seconds