• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monitoring The Development Of Properties In Fresh Cement Paste And Mortar By Ultrasonic Waves

Kasap Keskin, Ozlem 01 January 2009 (has links) (PDF)
The determination and following up the development of properties during the fresh state and early ages of concrete are important in order to schedule the work and to obtain the desired properties in the hardened concrete. As the traditional methods such as Vicat and Penetrometer mostly depend on the experience of the operator and do not provide a continuous picture of the development of properties, reliable and objective non-destructive test methods are needed for the quality control of fresh concrete. The purpose of this thesis is to observe the development of properties of fresh pastes and mortars continuously by longitudinal ultrasonic waves. For this purpose, cement pastes and mortars with three different w/c ratios were prepared with ordinary portland cement. The ultrasonic pulse velocities were determined continuously during hydration. The setting times were also determined by standard test methods. The flexural and compressive strength were determined at 1, 2, 3, 7 and 28 days by standard test method and the volume of permeable pores were also obtained at the same ages. Lastly, the heat of hydration of cement pastes of similar w/c ratios were determined by isothermal calorimetry. UPV (Ultrasonic Pulse Velocity) development was compared with the results of standard tests applied on the samples. The results revealed that the UPV is a useful method in monitoring the hydration process of cementitious materials.
2

STUDY OF THE FRESH-STATE AND TRANSPORT PROPERTIES OF 3D-PRINTED CONCRETE  WITH HIGH CEMENT REPLACEMENT AND MECHANICAL PERFORMANCE OF 3D-PRINTED  COMPOSITE BEAMS

Fabian B Rodriguez (15443855) 10 May 2023 (has links)
<p>3D printing of concrete (3DPC) has been demonstrated to be a potential and viable solution for different infrastructure applications considering its multiple benefits and the continuous advances in achieving an advanced manufacturing process, using innovative materials, and using unique approaches to demonstrate high-performance characteristics. Still, some challenges remain to be addressed as this technology advances through the stages of prototyping, validation, and testing; looking to establish itself as an alternative to cast concrete for the mass production of civil infrastructure. The research presented in this dissertation is focused on the influence of the fabrication process of 3D-printed concrete on three relevant aspects for its deployment in large-scale scenarios. These aspects include the scalability of mixture development for different printing systems, the mechanical performance of reinforced 3D-printed elements, and the initial evaluation of durability properties. This research aims to contribute to the development of strategies to understand the effects of the mixture composition and the use of supplementary cementitious materials (SCMs) in the process of mixture development to enhance the printability characteristics, fresh state properties, and durability properties of these materials. Furthermore, the incorporation of novel reinforcement alternatives and controlled architectures, in addition to the study of the transport properties of 3D-printed elements can lead to advances in the use of 3D-printed concrete in structural applications.</p>

Page generated in 0.1234 seconds