• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance of local aggregate in high friction surface treatment

Zahir, Humaira January 1900 (has links)
Master of Science / Department of Civil Engineering / Mustaque A. Hossain / Road surfaces may prematurely lose pavement friction due to polished aggregates on sharp horizontal curves, steep grades, or near intersections resulting in vehicle skidding. The problem gets exacerbated during wet weather. The Federal Highway Administration (FHWA) estimates that about 70% of wet pavement crashes can be prevented or minimized by improving pavement friction. High Friction Surface Treatment (HFST), a specially-designed thin surface application of hard aggregates and thermosetting resins like epoxy, has been proven to be an effective method to increase road surface friction. Calcined bauxite has been predominantly used in the United States as the hard aggregate in combination with an epoxy binder for HFST. However, this treatment is expensive since the calcined bauxite is imported. The objective of this study is to evaluate the performance of a local aggregate in HFST. Slab specimens of hot-mix asphalt (HMA) were compacted in the laboratory and treated with HFST systems incorporating both calcined bauxite and a local, hard aggregate, Picher Oklahoma flint aggregate. The treated HMA specimens were then tested with a Dynamic Friction Tester (DFT) and a Circular Track Meter (CTM) to determine the frictional coefficient and texture depth, respectively. Also, Hamburg Wheel Tracking Device Testing were conducted on these HFST systems to evaluate wearing resistance under repetitive wheel load. Field measurements of texture depths on HFST were also done. Statistical analysis was performed to compare the performance of high friction surfaces prepared with different aggregate epoxy combinations. The results show that flint aggregate can be a suitable substitute for the calcined bauxite in HFST. Field measurements also showed marked improvements in texture depth with HFST.
2

Identification of barriers and least cost paths for autonomous vehicle navigation using airborne LIDAR data

Poudel, Om Prakash 21 August 2007 (has links)
In the past several years, the Defense Advanced Research Projects Agency (DARPA) has sponsored two Grand Challenges, races among autonomous ground vehicles in rural environments. These vehicles must follow a course delineated by Global Positioning System waypoints using no human guidance. Airborne LIDAR data and GIS can play a significant role in identifying barriers and least cost paths for such vehicles. Least cost paths minimize the sum of impedance across a surface. Impedance can be measured by steepness of slope, impenetrable barriers such as vegetation and buildings, fence lines and streams, or other factors deemed important to the vehicle's success at navigating the terrain. This research aims to provide accurate least cost paths for those vehicles using airborne LIDAR data. The concepts of barrier identification and least cost path generation are reviewed and forty-five least cost paths created with their performance compared to corresponding Euclidean paths. The least cost paths were found superior to the corresponding Euclidean paths in terms of impedance as they avoid barriers, follow roads and pass across relatively gentler slopes. / Master of Science
3

Evaluation of International Friction Index and High-Friction Surfaces

Roa, Julio Alberto 25 January 2009 (has links)
State highway agencies have an obligation to provide users with optimal surface conditions under various weather conditions throughout the year. A satisfactory pavement surface should exhibit good friction and texture depth to reduce roadway highway accidents. This is why friction is starting to receive increased attention in the pavement management process. There have been numerous research efforts by different countries and agencies to better understand the behavior of different friction testing devices and the influence of texture, speed, and other external conditions on their measurements. The first part of this thesis presents a research effort to compare and harmonize texture and skid resistance measurements taken with various devices on 24 pavement sections with a wide range of textures. Measurements were compared and the International Friction Index (IFI) calculated following PIARC and ASTM steps. The results revealed discrepancies in the IFI values calculated for the different devices, suggesting that the coefficients A, B, and C proposed by PIARC may need to be adjusted for each device considered before the IFI can be implemented by the surface properties consortium participating agencies. In this research the A, B, and C coefficients were then recalculated, and the predicted values of friction using these revised coefficients are presented. The coefficients developed were also used to obtain IFI values for high-friction surfaces (HFS). It has been found that under different conditions, different parameters and coefficients will result. It is strongly recommended equipment comparison experiments (like the NASA and Smart Road programs) continue to better determine the coefficients necessary for harmonization. HFS have emerged as viable high-friction pavement alternatives that mitigate the consequences of driver error, poor geometric alignment of the roadway, and insufficient friction at the tire-pavement interaction, especially during wet weather. This thesis presents a study of the HFS available in the U.S. market and their performance (friction and texture) in different applications, under different weather conditions, and in various locations. This thesis also presents the results of the benefit-cost analysis for the studied HFS. / Master of Science
4

Friction surface development and its structure on carbon fibre reinforced silicon carbide disc

Wang, Yuan January 2011 (has links)
Carbon fibre reinforced ceramic composites (Cf/C-SiC) have been explored as lightweight and durable disc in a friction brake. This composite was manufactured through infiltration of liquid silicon into a Cf/C perform. It has heterogeneous microstructure, composed of three key phases, silicon carbide, Cf/C, and un-reacted residual silicon. The development of the transfer layer on the friction surface of Cf/C-SiC was studied through microstructural image registration of the surface after a range of braking stops on a laboratory-scale dynamometer test rig. When an organic pad was used as the counter face brake pad, it was found that a steady transfer layer was developed in silicon regions right after initial stops; in carbon-fibre/carbon (Cf/C) regions and most of the silicon carbide region, the friction surfaces were unsteady and any possible friction transfer layers were hardly built up. Large voids and cracks/crevices likely became pools to quickly and efficiently collect the transferred materials generated by the friction, but the compacts formed inside the pools were susceptible to be stripped off by further braking operation. Three types of friction surfaces were generalized: type I, the friction transfer layer had a steady relationship with the matrix and respectable longevity; type II, the transfer layer had an unstable relationship with the matrix and poor durability; type III, the friction transfer layer had a steady relationship with the matrix but short lifetime. After testing against organic pads under the laboratory scale dynamometer testing condition, the friction surface of each key phase in Cf/C-SiC composites disc was studied by transmission electron microscopy (TEM). It was found that the transfer layer developed on Si consists of fine particles of metal silicides, silicates and minerals. The substrate damage of Si was not observed, while the precipitates having high oxygen content were found in the substrate. Formation of an interfacial bonding between transfer layer and silicon substrate is believed to be the key factor for the formation of a stable transfer layer on Si. However, the interfacial bonding between transferred materials and SiC was not detected. Kinks are common features developed on the friction surface of SiC. The interface between carbon fibre and carbon matrix was experienced mechanical damage, in form of microcracks, and the transferred material was developed in the interface. Instead of transfer layer, a thin amorphous film, produced by friction induced amorphisation of carbon fibre, was developed on top of carbon fibre.
5

Vliv cílené modifikace třecích povrchů na součinitel tření u nekonformních povrchů / Influence of the surface texturing of non-conformal surfaces at the friction coefficient

Pišťáček, Karel January 2010 (has links)
This diploma thesis deals with the influence of the surface texturing of non-conformal surfaces at the friction coefficient. In the work were made adjustment of experimental apparatus for measuring friction in the contact between ball and flat disk. Friction coefficient was calculated by the size of the torque on the ball, which was measured by the torque sensor. For recording and processing signal from the sensor was designed software that makes it possible to measure the coefficient of friction for selected conditions (loading of contact, speed of rubbing surfaces and rolling-sliding conditions). Experiments were carried out with smooth and textured ball, glass, and steel disc at different speeds and rolling-sliding conditions. To determine the effect of the influence of the surface texturing at the friction coefficient the size of the coefficient of friction of smooth and textured ball was compared. It was found that the microtexture of the friction coefficient has little effect.
6

Snižování tření cílenou modifikací povrchů / Friction reduction by surface texturing

Mauer, Milan January 2018 (has links)
The aim of this diploma thesis is to experimentally elucidate the connection between the friction of the specimen with the textured surface and the optical observation of the sliding contact surface. The thesis focuses on the configuration of the journal bearing. This configuration is achieved by replacing the block with a circular sapphire section on a block-on-ring tribometer. For exploring of the lubricant film formation, the method of optical interferometry and fluorescence is implemented on the block-on-ring tribometer. These adjustments allow examination of the effect of the textured surface on the friction coefficient and the thickness of the lubricant film. In a mixed mode, the textures cause a significant increase in friction values and reduce the thickness of the lubricant film. The negative influence of dimples increases with the increasing radial load size. In the hydrodynamic mode, the textures have a lower negative effect on the resulting values than in the mixed mode. The changes are dependent on the size of the radial load and the viscosity of the lubricant. In the hydrodynamic mode, cavitation was not observed, and the effect of the textured surface does not correspond to theoretical prerequisites, which is reflected by lower lubricant thickness and higher friction.

Page generated in 0.1085 seconds