• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 20
  • 4
  • 1
  • Tagged with
  • 84
  • 84
  • 20
  • 20
  • 19
  • 15
  • 14
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Friction stir welding (FSW) simulation using an arbitrary Lagrangian-Eulerian (ALE) moving mesh approach

Zhao, Hua, January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains x, 166 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 154-161).
12

Friction stir processing of nickel aluminum propeller bronze in comparison to fusion welds/

Murray, David L. January 2005 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, June 2005. / Thesis Advisor(s): Terry McNelley. Includes bibliographical references (p. 71-72). Also available online.
13

Transient temperature distribution in inertia welding

Nagappan, Periakaruppan, January 1969 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1969. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
14

Experimental measurements of longitudinal load distributions on friction stir weld pin tools /

Stahl, Aaron L., January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Mechanical Engineering, 2005. / Includes bibliographical references (p. 33).
15

Characterization of friction hydro pillar process weld properties as applied to 10CrMo910 creep resistant steel for application in the power generation Industry

Bulbring, Daniel Louis Hans Unknown Date (has links)
Creep degradation of steam carrying vessels in the power generation industry is a concern that needs to be constantly monitored. The Weldcore® process has been earmarked as a potential method of creep sampling which will allow for thick-walled sections to be analysed. A component of the process involves plugging the resultant hole after removing a creep sample using a novel welding technique called friction hydro pillar processing. At the commencement of this study, insufficient data was available to warrant safe industrial application of the process. This research was conducted to evaluate the performance of 10CrMo910 friction hydro pillar process welds. The effects of downward force, stud taper angle, hole taper angle and hole base diameter on process response, defect population, static properties and dynamic performance were evaluated. The variation of downward force showed that higher forces produce significantly smaller defects and higher fatigue life. The occurrence of defects was linked to process parameters and geometry thereby identifying the correct parameters for safe use in the power generation industry. Flash formation was identified as an early indicator of weld defects and can assist with quality control in industrial applications. Methods of standardising the plunge depth and forge force were developed to identify the correct magnitudes for different geometries, without the need for testing. Defects were shown to populate specific regions of the weld and produce variations in fatigue life. Crack initiation sites were detected which will aid in identifying areas of focus in further research and development. Temperature measurements were linked to the occurrence of defects and crack initiation sites and have been identified as a method of identifying defective welds. The effects of process parameters and stud and hole taper angles on energy inputs and near interface temperatures were statistically evaluated. Downward force was shown to have the largest effect on energy input rates, total energy input and temperatures at the 11.5mm and 20.5mm positions. Smaller hole and stud taper angles produced lower energy inputs and were identified as more energy efficient than the larger taper angles. A regression model was also developed to predict the fatigue life of welds and can assist with critical process related decision making. A range of hole base diameters were identified which produced welds with low defect populations and fatigue performance similar to that of the parent plate. Larger hole base diameters were shown to produce significant defects along the hole bottom fillet, in the weld nugget and along the bond line. Temperature measurements of the larger diameter welds showed a delay in response and are attributed to a delayed contact of plasticised stud material with the sidewall. Welds with hole base diameters larger than 11mm produced unrepeatable and defective welds, and also required higher energy inputs making smaller diameters more desirable. Analysis of all welds in this study revealed that clearance and interfacial pressures characterise the quality of friction hydro pillar process welds, therefore models were developed to aid in critical decision making with respect to downward force and geometry. This study has successfully evaluated the effects of process parameters and geometry on the properties of friction hydro pillar process welds and thereby has increased understanding of the process.
16

Monitoring and intelligent control for complex curvature friction stir welding

Hua, Tao January 2006 (has links)
A multi-input multi-output system to implement on-line process monitoring and intelligent control of complex curvature friction stir welding was proposed. An extra rotation axis was added to the existing three translation axes to perform friction stir welding of complex curvature other than straight welding line. A clamping system was designed for locating and holding the workpieces to bear the large force involved in the process between the welding tool and workpieces. Process parameters (feed rate, spindle speed, tilt angle and plunge depth), and process conditions (parent material and curvature), were used as factors for the orthogonal array experiments to collect sensor data of force, torque and tool temperature using multiple sensors and telemetry system. Using statistic analysis of the experimental data, sensitive signal features were selected to train the feed-forward neural networks, which were used for mapping the relationships between process parameters, process conditions and sensor data. A fuzzy controller with initial input/output membership functions and fuzzy rules generated on-line from the trained neural network was applied to perceive process condition changes and make adjustment of process parameters to maintain tool/workpiece contact and energy input. Input/output scaling factors of the fuzzy controller were tuned on-line to improve output response to the amount and trend of control variable deviation from the reference value. Simulation results showed that the presented neuro-fuzzy control scheme has adaptability to process conditions such as parent material and curvature changes, and that the control variables were well regulated. The presented neuro-fuzzy control scheme can be also expected to be applied in other multi-input multi-output machining processes.
17

Analysis and modelling of the temperature distribution during the friction taper stud welding of 10CrMo910

Van Zyl, Carlo Angelo Antonio January 2008 (has links)
Heat generation during the FTSW process plays and important role in determining the characteristics of the weld. In order to obtain temperature fields, a transient temperature heat analysis is required. An area is the maximum temperatures reached within the base material during the FTSW process. These temperatures will be measured during experimentation, and compared to the welding simulation done using FEA. From the literature search it appeared that no heat transfer analysis had been done using finite element methods.
18

Controlling Weldment and Metallurgical Properties Through Process Control in Rotary Friction Welding

Taysom, Brandon Scott Boyer 24 September 2019 (has links)
Weld quality in the context of process control and internal conditions is studied. Several different alloys are welded including plain carbon steel, high-temperature steels, and several traditional and advanced superalloys. Across all studied weld systems, the following conditions led to stronger welds: higher forces and feedrates, lower temperatures, and moderate or limited upsets. In the best cases, post-weld strengths were nearly equal to basemetal strength. Tradition holds that large and symmetric upsets are necessary for good welds, but this study contradicts that notion. The fundamental requirements for bonding are two sufficiently clean surfaces in intimate contact. Only minimal upset is necessary to achieve that. In welding alloy 718, only 1 mm of feed (or ~0.4 mm of sample upset) was necessary to achieve $>$95\% of basemetal strength. In an advanced superalloy with low ductility, very low upsets were required in order to achieve high joint strength. For this low-ductility alloy, using a containing geometry increased both the internal pressure and ductility of this alloy, leading to a much larger window of sound welding conditions and stronger welds overall. In several dissimilar alloy systems, the relationship between force/feedrate and upset asymmetry varied between each alloy, but a more symmetric upset did not correlate to stronger welds. Advanced process control in FW was also performed with closed-loop temperature control and open-loop predictive cooling rate control. Using this technique, martensitic microstructures associated with a fast natural cooling rate were avoided, and a pearlitic microstructure was obtained. The yield and tensile strength of the weld was not adversely affected, and both were within range of published values for the basemetal.
19

Modeling of thermal and mechanical effects during friction stir processing of nickel-aluminum bronze

Jamison, Jay Dee 09 1900 (has links)
Approved for Public Release; Distribution is Unlimited / Friction Stir Processing (FSP), although relatively simple in concept, results in an extremely complex thermomechanical treatment to the material being processed. Previous studies of FSP have shown that the process results in extremely high strain, strain rates and temperatures as well as gradients in strain, strain rate and temperature within a small volume of material. This thesis will study the effect of varying FSP parameters during the processing of Nickel-Aluminum-Bronze (NAB) propeller material. The modeling program CTH was used to define the relationship between tool rotation speed, traversing speed and the total power input to the material. The tool's mechanical power and the power generated by deformation of the material has been investigated. The modeling experiments were designed to gain an understanding of the relationship of process parameters, microstructure and mechanical properties, and to enhance our understanding of the flow patterns and thermal histories of the NAB material in the stir zone. / Lieutenant, United States Navy
20

Ferrous friction stir weld physical simulation

Norton, Seth Jason, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 209-217).

Page generated in 0.1362 seconds