• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1097
  • 436
  • 228
  • 121
  • 81
  • 48
  • 38
  • 37
  • 23
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 2542
  • 456
  • 436
  • 376
  • 341
  • 315
  • 298
  • 295
  • 224
  • 215
  • 205
  • 202
  • 187
  • 184
  • 172
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

APPLICATION OF THE GFEM METHOD TO SOLVE STRUCTURAL MECHANICS PROBLEMS

PHADKE, MIHIR January 2005 (has links)
No description available.
232

Transfer during sliding wear of selected metal systems/

Chen, Li-Hui, January 1984 (has links)
No description available.
233

Tribological considerations of threaded fastener friction and the importance of lubrication

Dyson, C.J., Hopkins, W.A., Aljeran, D.A., Fox, M.F., Priest, Martin 10 January 2024 (has links)
Yes / The torque-tension relationship of threaded fasteners affects almost all engineering disciplines. Tribological processes at fastener interfaces manifest as the system's friction coefficient. Lubrication-related influences are usually described empirically using K or μ. The drive towards lightweight fastener materials in engineering systems and lubricants with reduced environmental impact is challenging existing knowledge and industrial practice in a range of applications, many safety critical. More comprehensive understanding is needed to achieve repeatable friction during assembly and re-assembly, resistance to loosening and fretting during operation, and effective anti-seize for disassembly with a growing range of materials and lubricants. The lubricants considered showed three predominant lubrication mechanisms: plastic deformation of metal powders; burnishing/alignment of molybdenum disulphide, MoS2; and adhering/embedding of non-metal particles. Multivariate analysis identified key sensitivities for these mechanisms. Assembly generated changes at fastener surfaces and in the lubricating materials. Re-assembly exhibited significant reductions in friction. / The full-text of this article will be released for public view at the end of the publisher embargo on 07 Dec 2024.
234

Wear and friction studies of alumina: Correlation with electron triboemission

Mazilu, Dan A. 10 January 2003 (has links)
The first question addressed in this thesis is whether the cumulative triboemission from the abrasion of alumina by a diamond indenter (repeat-pass sliding) correlates with the volume of material removed and, in particular, whether transitions in the rate of material removal are mirrored in the cumulative triboemission rate. As a function of load and number of diamond passes, several wear regimes are observed that are characterized from SEM micrographs by different relative proportions of plastic flow material and fractured surface in the wear scar. In all but one wear regime, the correlation between the wear volume and cumulative triboemission is modest (linear regression coefficient R2 = 0.71); including the one atypical wear regime worsens the correlation. The wear volume and cumulative triboemission are shown to be random variables with normal and lognormal distributions, respectively. Again, excluding the atypical wear regime, the correlation between the logarithms of the estimated population means is significantly better (R2 = 0.91) than the correlation between wear volume and cumulative triboemission for individual samples. In addition to the overall correlation between wear volume and cumulative triboemission, transitions from one wear regime to another are marked by changes in the slope of the mean cumulative triboemission versus pass number. These transitions correlate with the relative fraction of plastic flow debris in the wear scar. The second question addressed in this thesis is whether the introduction of the chemical vapor aluminum tri-sec butoxide, [C2H5CH(CH3)O]3Al, ATSB, into the boundary layer of an alumina-on-alumina sliding contact can reduce wear and friction. A split-plot factorial experiment was conducted; the factors tested, in addition to the presence or absence of ATSB, were normal load, sliding speed, and surface roughness. The main conclusions of the experiment are that ATSB has no statistically significant effect on specific wear, but that the presence of ATSB reduces friction by 21% at low sliding speed (0.02 m/s) and increases friction by 26% at high sliding speed (1.2 m/s). / Ph. D.
235

Quantitative Laser-based Assessment of Top of Rail Friction Modifiers for Railroad Application

Hasan, Abdullah Mohammed 04 May 2016 (has links)
The primary purpose of this study is to assess the effectiveness and utility of laser-based sensors for measuring, quantitatively, the presence and extent of top-of-rail (TOR) friction modifiers that are commonly used in the railroad industry for reducing friction between railcar wheels and rail. Modifying the friction between the wheel and rail is not only important for significantly reducing rolling resistance, but it also contributes to reducing wheel and rail wear, lowering rolling contact fatigue, and potentially curving resistance. It is common to monitor rail lubrication empirically by manually observing the sheen of the rail and tactically sensing any residues that may be present on the rail. Often performed by experienced railroad engineers, such methods are highly subjective and do not provide a quantitative assessment of how lubricated or unlubricated the track may be. A new, quantitative measurement method for accurately assessing the state of lubrication of rail is developed and studied in depth. The method takes advantage of the light reflection and dispersion properties of laser-based optical sensors to provide a repeatable, verifiable, and accurate measure of the presence of TOR friction modifiers on the rail. The measurement system is assembled in a self-contained, portable rail cart that can be pushed on the rail at walking speeds. Various TOR states are assimilated in the lab for assessing the effectiveness of the laser system. Additionally, the laboratory results are repeated in the field on various tracks, including revenue service track. The results of the tests indicate that the developed system is able to accurately measure the presence of TOR friction modifiers from none to fully-saturated, but is not affected by environmental factors such as rain, sunlight, type of rail, and top-of-rail condition. The measurements provide the means for classifying the state of rail friction in an indexed manner. The results of the study will not only have a significant effect on more efficient use of TOR friction modifiers for promoting better fuel efficiency, but they can also have a major impact on braking practices in applications such as Positive Train Control (PTC). / Ph. D.
236

A study of flow improvers in wet gas pipelines

More, Parimal P. 01 April 2003 (has links)
No description available.
237

Online Identification of Friction Coefficients in an Industrial Robot

Längkvist, Martin January 2009 (has links)
<p>All mechanical systems with moving parts are affected by friction, including industrial robots. Being able to design an accurate friction model would further increase the performance of todays robots. Friction is a complex dynamic phenomena that is constantly changing depending on the state and environment of the robot. It is therefore beneficial to update the parameters of the friction model online. An estimate of the friction will be made using the feedback control signal with the help of a feedforward control scheme in a two axis simulation setup. The friction estimate is then used for an offline identification of three friction model parameters in a static Lugre friction model. Improvements on the identification will be done by introducing some shut-off rules that will improve the estimate. The normalized least mean square method (NLMS) will then be used to update the parameters online. A simulation of friction compensation with a fixed friction model, and with an adaptive friction model will be studied. The method will also be simulated using experimental data taken from a real industrial robot.</p>
238

Online Identification of Friction Coefficients in an Industrial Robot

Längkvist, Martin January 2009 (has links)
All mechanical systems with moving parts are affected by friction, including industrial robots. Being able to design an accurate friction model would further increase the performance of todays robots. Friction is a complex dynamic phenomena that is constantly changing depending on the state and environment of the robot. It is therefore beneficial to update the parameters of the friction model online. An estimate of the friction will be made using the feedback control signal with the help of a feedforward control scheme in a two axis simulation setup. The friction estimate is then used for an offline identification of three friction model parameters in a static Lugre friction model. Improvements on the identification will be done by introducing some shut-off rules that will improve the estimate. The normalized least mean square method (NLMS) will then be used to update the parameters online. A simulation of friction compensation with a fixed friction model, and with an adaptive friction model will be studied. The method will also be simulated using experimental data taken from a real industrial robot.
239

Comparison of Friction measured in Linear and Rotational motion

Sundaram, Gurunathan 01 December 2019 (has links)
In the past few decades, brake pad-rotor interface friction studies have gained high importance in the automotive industry. The goal of these studies has been to improve the design to maximize the contact area and performance in brakes. In these studies, friction coefficient has always assumed to be the same for linear and rotational motion. In our study, we show that the rotational and linear friction process have different friction coefficients. We use semi-metallic and ceramic brake material pads reduced into brake samples using scaling laws of physics. The samples were mounted on the Universal Mechanical Tester and experimented for linear and rotational friction process against Pearlitic Gray cast iron rotor. From results, it proved friction coefficients of linear movement is always higher than the rotational movement. The linear friction coefficient was found to be 43% higher on an average than the rotational friction coefficient in both the materials tested at 1MPa and 10 mm/s. These results will help industry in gaining better fundamental understanding about the friction coefficients of rotor- brake contact interfaces.
240

Algorithm for Estimation of Wheel-Rail Friction Coefficient from Vehicle-Track Forces

Petrov, Vladislav January 2012 (has links)
In order to ensure safe travel, railway vehicles must be stable under every condition along the track. Thus, a vehicle can be certified for operation only when it can fulfil certain criteria related to the ride stability. The stability of the vehicle is highly dependent on the wheel-rail friction coefficient: higher friction results in worse ride. So, to ensure a good evaluation of the stability, the friction should be high enough during tests. The same applies to the risk of wheel flange climbing. At the present time, the wheel-rail friction can not be measured directly but there are different procedures utilized to ensure that the conditions are suitable for testing the stability of the vehicle. In this study an algorithm is proposed to estimate the wheel-rail friction coefficient by using quantities which can be measured in reality. The algorithm is tried out in computer simulations. The algorithm has two parts: in Part 1 the friction coefficient is proposed to be equal to the ratio of the total creep force divided by the normal force; in Part 2 the total creep and spin creep are estimated to observe their correlation to the estimated friction. The contact angle in Part 1 is estimated by a contact point function. In the simulations, different conditions are tried. There are four horizontal radii: tangent track, R1300m, R1000m, and R400m. Three friction coefficients are used: 0.5, 0.4 and 0.3. In addition to this, track irregularities are included. A single vehicle is simulated in two modes: capable and incapable of passive radial steering. The track irregularities caused high values of the proposed estimated friction coefficient. The values in some instances were close or equal to the input friction coefficient of the simulation. Thus, if the highest values of the estimated friction were taken over a certain distance or time, the friction of the simulation could be approximated. In most cases, the total creep was following the trend of the estimated friction. The total creep and spin creep were used as a quality factor to determine how close the estimated friction was to the simulation’s friction. In this study when the total creep was greater than 0.006 and the spin creep was less than 1.0 m-1, the estimated friction was close to the input friction. The closeness was dependent on the simulation’s friction. Higher input friction resulted in larger deviation compared to lower friction. A sensitivity analysis has been performed by deliberately introducing errors in the position of the contact point and the angle of attack. The analysis shows that the errors are not critical when the contact point is close to the tread circle. When the contact point is close to the flange, a good measurement of the wheel profile and the contact point position required to obtain accurate results. On the other hand, the errors affect the friction estimate for high spin and low total creepage. These results are discarded by the algorithm, the influence of the errors is minimized.

Page generated in 0.2147 seconds