Spelling suggestions: "subject:"friction."" "subject:"criction.""
701 |
MACHINABILITY ENHANCEMENT OF STAINLESS STEELS THROUGH CONTROL OF BUILT-UP EDGE FORMATIONSeid Ahmed, Yassmin January 2020 (has links)
MACHINABILITY ENHANCEMENT OF STAINLESS STEELS THROUGH CONTROL OF BUILT-UP EDGE FORMATION / Demand for parts made from stainless steel is rapidly increasing, especially in the oil and gas industries. Stainless steel provides a number of key advantages, such as high tensile strength, toughness, and excellent corrosion resistance. However, stainless steel cutting faces some serious difficulties. At low cutting speeds, workpiece material and the chips formed during machining tend to adhere to the cutting tool surface, forming a built-up edge (BUE). The BUE is an extremely deformed piece of material which intermittently sticks to the tool at the tool-chip interface throughout the cutting test, affecting tool life and surface integrity. Unstable BUE can cause tool failure and deterioration of the workpiece. However, stable BUE formation can protect the cutting tool from further wear, improving the productivity of stainless steel machining.
This thesis presents an in-depth study of machining performance using different coated tools and various coolant conditions to examine the nature of the different tool wear mechanisms present during the turning of stainless steels. Then, different textures are generated on the tool rake face to control the stability of BUE and reduce friction during the machining process.
Results show that the BUE can significantly improve the frictional conditions and workpiece surface integrity at low cutting speeds. Finally, square textures on tool rake face were found to control the stability of BUE and minimize the friction at the tool-chip interface. This reduces the average coefficient of friction by 20-24% and flank wear by 41-78% and increases surface finish by 54-68% in comparison to an untextured tool. / Thesis / Doctor of Philosophy (PhD) / Three main objectives are presented in this thesis. The first is a detailed investigation of the performance of stainless steel machining obtained by the use of different coated cutting tools and various cooling conditions. The goal of this research is to assess the reduction of tool service life, productivity, and part quality. The thesis also examines the causes of workpiece material adhesion to the cutting tool during the cutting test and to better explain its effects on tool wear and workpiece surface finish. This phenomenon is known as the "built-up edge" (BUE). Finally, different textures are applied on the cutting tool via a laser to stabilize the BUE formation on the cutting tool, thereby improving the quality of the part.
|
702 |
Heat Generation and Transfer in Additive Friction Stir DepositionKnight, Kendall Peyton 31 May 2024 (has links)
Additive friction stir deposition (AFSD) is an emerging solid-state additive manufacturing process that leverages the friction stir principle to deposit porosity-free material. The unique flow of material that allows for the transformation of bar stock into a near-net shape part is driven by the non-linear heat generation mechanisms of plastic deformation and sliding frictional heat generation. The magnitude of these mechanisms, and hence the total applied thermal power, implicitly depend on the thermal state of the system, forcing power input to become a dependent variable. This is not the case in other 3D printing methods; thermal power can be controlled independently. In this work, the heat generation in AFSD is explored, and its transfer is quantified. In particular, the time-dependent ratio between the amount of conduction into the AFSD tool versus into the substrate is quantified. It was found for the conditions tested with a single-piece AFSD tool, conduction up the tool was on the order of the conduction into the stir. For a more modern three-piece tool, the ratio between the tool and the substrate varied between 0.3-0.1. It was also found that traversing faster resulted in more heat flux into the substrate as would be expected by moving heat source modeling. The total heat generated was also quantified as being equal to between 60% and 80% of the mechanical spindle power depending on the tool type and the exact process conditions. That ratio was found to be time-invariant. At the same time, this changing heat flux ratio was shown to dramatically alter thermocouple measurements in the tool, showing the uncertainty of that method of process control. The contact state between the stir and the tool was treated as a thin conductive layer and a contact heat transfer coefficient was calculated on the order of 20 frac{kW}{m^2K}. The limitations of this treatment were found to occur when a significant amount of the heat generation came from frictional heating rather than plastic deformation. This implies that any measurement conducted in the tool is related to the stir by a complex function driven by the state of the stir; showcasing the need for more well-understood in-situ monitoring. Finally, some of the ideas about thermal control are applied to a case study on the repair of corroded through holes using AFSD to restore fatigue life. It was found that modifying the thermal boundary conditions and applying active cooling at the end of the repair could improve the fatigue life drastically. This was due to less time spent in a thermally active region leading to less heterogeneous nucleation and less grain boundary nucleation. This more preferred microstructure morphology led to a change in the fracture mode and increased the number of cycles to crack initiation and the number of cycles after crack initiation. / Doctor of Philosophy / Metal 3D printing of industrially relevant aluminum alloys is plagued with problems. Additive friction stir deposition seems well posed to overcome some of the problems associated with aluminum printing. Being able to 3D print these alloys with properties that are as good as traditional manufacturing offers a large potential cost and time savings over traditional manufacturing for the aerospace industry (e.g. Boeing, Lockheed Martin, U.S. Navy). For these components to be part of a plane, the manufacturer must prove the components were made the same way print-to-print regardless of the actual shape of the component being made. This dissertation focuses on the key metallurgical variable of temperature and explores how thermal energy is generated and where that energy goes in to the system. The key takeaway is, that without precise knowledge of the total heat generated and the entire thermal system, assurances about processing temperature cannot be made. An exploration of heat generation and metrics about its dispersion are presented. This is followed by a study on repairing structural components while changing the thermal system to understand its effects.
|
703 |
Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and frictionPu, Jaan H., Hussain, Awesar, Guo, Yakun, Vardakastanis, Nikolaos, Hanmaiahgari, P.R., Lam, Dennis 06 June 2019 (has links)
Yes / In this paper, an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied. In the present vegetated flow modelling, the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer. Within the vegetated layer, an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted. In the non-vegetated layer, a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated. Based on the studied analytical model, a sensitivity analysis has been conducted to assess the influences of the drag and friction coefficients on the flow velocity. The investigated ranges of drag and friction coefficients have also been compared to published values. The findings suggest that the drag and friction coefficient values are non-constant at different depths and vegetation densities, unlike the constant values commonly suggested in literature. This phenomenon is particularly clear for flows with flexible vegetation, which is characterised by large deflection.
|
704 |
Additive Friction Stir Deposition of Al-Ce Alloys for Improved Strength and DuctilityDavis, Devin Fredric 12 1900 (has links)
Additive friction stir deposition (AFSD) is a solid-state additive manufacturing (AM) technique that breaks down large constituent particles into more refined and uniformly disturbed microstructure. AFSD was used to print Al-Ce alloys. Current commercial Al-alloys upon elevated temperatures go through dissolution and coarsening of strengthening precipitates causing mechanical degradation of these alloys. Al-Ce alloys do not have this issue as cerium's low solubility restricts dissolution into the aluminum matrix at elevated temperatures, thus giving great thermal stability to the microstructure. Al-Ce alloys lack solid solubility that affects the solid solution strengthening and precipitation strengthening. Al-Ce alloys have limitation at room temperature as they can only reach a maximum of ~65 MPa yield strength. Elements like magnesium have been added to alloy to enable solid solution strengthening, and scandium to enable precipitation strengthening to improve strength before going through the AFSD process. By adding new elements to the Al-Ce alloys, an increase in the yield strength from ~60 MPa to ~200 MPa was achieved before AFSD. The casted alloys form coarse particles that reach 300 µm in size; resulting in stress concentration that causes material fracture before necking, giving >10% ductility. AFSD breaks down these coarse particles to increase strength and ductility increases. The particles were broken down to >20 µm which increased the ductility to 10%. The results of this research shows that Al-Ce alloys are able to reach commercial aluminum alloy mechanical standards of 400 MPa ultimate tensile strength and 10% ductility at room temperature for aerospace applications.
|
705 |
Establishing Boundary Conditions for Optimized Reconstruction of Head ImpactsStark, Nicole Elizabeth 03 June 2024 (has links)
Traumatic brain injuries (TBIs) encompass an array of head trauma caused by diverse mechanisms, including falls, vehicular accidents, and sports-related incidents. These injuries vary from concussions to diffuse axonal injuries. TBIs are characterized by the linear and rotational accelerations of the head during an impact, which are influenced by various factors such as the velocity and location of the impact and the contact surface. Consequently, the accuracy of laboratory tests designed to evaluate protective technologies must closely mirror real-world conditions.
This dissertation explores the boundary conditions essential for accurately replicating head impacts in laboratory settings. The research aims to improve the reconstruction of head impacts, concentrating on two main areas: 1) examining various aspects of friction during head impacts and 2) biomechanically characterizing the head impacts sustained by older adults during falls.
This study provides insights into the overall influence of friction during head impacts. It investigates the friction coefficients between the helmet's shell and the impact surface, as well as between human heads, headforms, and helmets. Additionally, it assesses how these frictional interactions influence oblique impact kinematics. Defining static and dynamic friction coefficients of the human head and headforms is needed to develop more realistic head impact testing methods, define helmet-head boundary conditions for computer-aided simulations, and provide a framework for cross-comparative analysis between studies that use different headforms and headform alterations.
This research also introduces and evaluates the accuracy of a model-based image mapping method to measure head impact speeds from single-view videos in un-calibrated environments. This measurement technique advances our comprehension of head impact kinematics derived from uncalibrated video data. By applying this method, videos of falls involving older adults were analyzed to determine head impact speeds and boundary conditions. The resulting data was used to construct headform impacts, capturing linear and rotational head impact kinematics. These reconstructions can inform the development of biomechanical testing protocols tailored to assess protective gear for older adults, with the goal of reducing fall-related head injuries. / Doctor of Philosophy / Traumatic brain injuries (TBIs) are head injuries that can happen in many ways, such as from falling, car accidents, or playing sports. These injuries can range from mild concussions to more severe cases, brain bleeds, or skull fractures. They happen when the head moves quickly or spins because of a hit, which can be affected by the speed of the impact, where on the head the impact happens, or what the head impacts against. Therefore, the accuracy of laboratory reconstruction head impact tests must closely mirror real-world conditions.
This dissertation explores the boundary conditions essential for accurately replicating head impacts in laboratory settings. The research aims to improve the reconstruction of head impacts, concentrating on two main areas: 1) examining various aspects of friction during head impacts and 2) biomechanically characterizing the head impacts sustained by older adults during falls.
This study provides insights into the overall influence of friction during head impacts. It investigates the friction coefficients between the helmet's shell and the impact surface, as well as between human heads, headforms, and helmets. Additionally, it assesses how these frictional interactions affect head impacts. Understanding how friction influences head impacts is crucial for improving helmet testing methods and allows for more consistent comparisons across various research studies that use different headform models or modifications.
This research also introduces and evaluates a method to calculate head impact speeds by analyzing video footage, even if the video was not taken with special equipment or setup. This approach improves our understanding of head movements during accidents by using video clips of falls, particularly those involving older adults, to determine the head speeds and conditions of the impact. The information gathered from these analyses helps to reconstruct these impacts using a headform to measure injury metrics. These reconstructions are crucial for designing tests that can evaluate safety equipment meant to protect older adults from head injuries during falls.
|
706 |
Development of Fiber Optic Aerodynamic Sensors for High Reynolds Number Supersonic FlowsPulliam, Wade Joseph 00 December 1900 (has links)
The purpose of the project was to examine fiber optic sensors for the measurement of pressure, skin friction, temperature, and heat flux in high Reynolds number, supersonic flow. Using a standard fiber optic signal conditioning unit (specifically a broadband interferometric system using spectra), the work centered around determining under what conditions these sensors will work effectively and quantifying the total system limitations.
An interferometric-based, fiber optic skin friction sensor was developed for the measurement of wall shear stress in complex, supersonic flows. This sensor type was tested successfully in laminar, incompressible flow, and supersonic flow up to Mach 1.92, Mach 2.4 and 3.0 flow, in which the sensor operated with varying success. A micromachined, fiber optic pressure sensor was also tested in these supersonic conditions, also with varying success. The accurate operation of these sensors was found to be tied to the flow conditions and the fiber optic, signal processing system.
A correlation was found to exist between the energy of the flow, either through its dynamic pressure or through external disturbances such as shocks or separation, and the noise in the signals, expressed by the variance of the gap estimate, for the pressure and skin friction sensors in these flows. The energy of the flow couples with the mechanical properties of the sensor reducing the fringe contrast of the signal used by the optical signal processing system to determine a gap estimate. As the energy of the flow is increased and the sensor is excited, the fringe contrast is reduced. A practical limit of a normalized fringe contrast of 0.10 was found for producing accurate gap estimates in real flows. A consequence is that there is a limit to the dynamic pressure of the flow for the sensors to operate accurately, which is demonstrated by the varying success of the supersonic wind tunnel tests. This correlation is sensor specific, meaning that sensors can be designed to operate successfully in any flow. Also, the signal processing system, which forms the other end of the total system, could be improved to allow accurate measurements with the current sensors. / Ph. D.
|
707 |
Design of Gages for Direct Skin Friction Measurements in Complex Turbulent Flows with Shock Impingement CompensationRolling, August Jameson 05 July 2007 (has links)
This research produced a new class of skin friction gages that measures wall shear even in shock environments. One test specimen separately measured wall shear and variable-pressure induced moment. Through the investigation of available computational modeling methods, techniques for accurately predicting gage physical responses were developed. The culmination of these model combinations was a design optimization procedure. This procedure was applied to three disparate test conditions: 1) short-duration, high-enthalpy testing, 2) blow-down testing, and 3) flight testing. The resulting optimized gage designs were virtually tested against each set of nominal load conditions. The finalized designs each successfully met their respective test condition constraints while maximizing strain output due to wall shear.
These gages limit sources of apparent strain: inertia, temperature gradient, and uniform pressure. A unique use of bellows provided a protective shroud for surface strain gages. Oil fill provided thermal and dynamic damping while eliminating uniform pressure as a source of output voltage. Two Wheatstone bridge configurations were developed to minimize temperature effects first from temperature gradient and then from spatially varying heat flux induced gradient. An inertia limiting technique was developed that parametrically investigated mass and center of gravity impact on strain output.
Multiple disciplinary computational simulations of thermal, dynamic, shear, moment, inertia, and instrumentation interaction were developed. Examinations of instrumentation error, settling time, filtering, multiple input dynamic response, and strain gage placement to avoid thermal gradient were conducted. Detailed mechanical drawings for several gages were produced for fabrication and future testing. / Ph. D.
|
708 |
Development and Ground Testing of Direct Measuring Skin Friction Gages for High Enthalpy Supersonic Flight TestsSmith, Theodore Brooke 02 November 2001 (has links)
A series of direct-measuring skin friction gages were developed for a high-speed, high-temperature environment of the turbulent boundary layer in flows such as that in supersonic combustion ramjet (scramjet) engines, with a progression from free-jet ground tests to a design for an actual hypersonic scramjet-integrated flight vehicle. The designs were non-nulling, with a sensing head that was flush with the model wall and surrounded by a small gap. Thus, the shear force due to the flow along the wall deflects the head, inducing a measurable strain. Strain gages were used to detect the strain. The gages were statically calibrated using a direct force method. The designs were verified by testing in a well-documented Mach 2.4 cold flow. Results of the cold-flow tests were repeatable and within 15% of the value of Cf estimated from simple theory. The first gage design incorporated a cantilever beam with semiconductor strain gages to sense the shear on the floating head. Cooling water was routed both internally and around the external housing in order to control the temperature of the strain gages. This first gage was installed and tested in a rocket-based-combined-cycle (RBCC) engine model operating in the scramjet mode. The free-jet facility provided a Mach 6.4 flow with P0 = 1350 psia (9310 kPa) and T0 = 2800 °R (1555 °K). Local wall temperatures were measured between 850 and 900 °R (472-500 °K). Output from the RBCC scramjet tests was reasonable and repeatable. A second skin friction gage was designed for and tested in a wind tunnel model of the Hyper-X flight vehicle scramjet engine. These unsuccessful tests revealed the need for a radically different skin friction gage design. The third and final skin friction gage was specifically developed to be installed on the Hyper-X flight vehicle. Rather than the cantilever beam and semiconductor strain gages, the third skin friction gage made use of a flexure ring and metal foil strain gages to sense the shear. The water-cooling and oil-fill used on the previous skin friction sensors were eliminated. It was qualified for flight through a rigorous series of environmental tests, including pressure, temperature, vibration, and heat flux tests. Finally, the third skin friction gage was tested in the Hyper-X Engine Model (HXEM), a full-scale-partial-width wind tunnel model of the flight vehicle engine. These tests were conducted at Mach 6.5 enthalpy with P0 = 555 psia (3827 kPa) and h0 = 900 Btu/lbm in a freejet facility. The successful testing in the wind tunnel scramjet model provided the final verification of the gage before installation in the flight vehicle engine. The development, testing, and results of all three skin friction gages are discussed. / Ph. D.
|
709 |
Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature FlowsOrr, Matthew William 10 February 2004 (has links)
This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes 230, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0-500 Pa (0-10g) and higher shears can be measured by changing the floating head size.
Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is typical of a value in a scramjet engine. The gage can survive for 10 minutes and operate for 3 minutes before a 10% loss in flexure stiffness occurs under these conditions.
Repeated cold-flow wind tunnel tests at Mach 2.4 with a stagnation pressure from 3.7-8.2 atm (55-120 psia) and ambient stagnation temperature (Re=6.6x107/m) and Mach 4.0 with a stagnation pressure from 10.2-12.2 atm (150-180 psia) and ambient stagnation temperature (Re=7.4x107/m) were performed in the Virginia Tech Supersonic Wind Tunnel. Some of these tests had the gage intentionally misaligned by 25o to create a virtual 3D flow in this nominally 2D facility. Experimental results gave excellent agreement with semi-empirical prediction methods for both the aligned and 25o experiments. This fiber-optic skin friction gage operated successfully without viscous damping. These tests in the supersonic wind tunnel validated this wall shear gage design concept. / Ph. D.
|
710 |
Dynamics and Statics of Three-Phase Contact LineZhao, Lei 17 September 2019 (has links)
Wetting, which addresses either spontaneous or forced spreading of liquids on a solid surface, is a ubiquitous phenomenon in nature and can be observed by us on a daily basis, e.g., rain drops falling on a windshield and lubricants protecting our corneas. The study of wetting phenomena can be traced back to the observation of water rising in a capillary tube by Hauksbee in 1706 and still remains as a hot topic, since it lays the foundation for a wide spectrum of applications, such as fluid mechanics, surface chemistry, micro/nanofluidic devices, and phase change heat transfer enhancement. Generally, wetting is governed by the dynamic and static behaviors of the three-phase contact line. Therefore, a deep insight into the dynamics and statics of three-phase contact line at nanoscale is necessary for the technological advancement in nanotechnology and nanoscience. This dissertation aims to understand the dynamic wetting under a molecular kinetic framework and resolve the reconfiguration of liquid molecules at the molecular region of contact line.
Water spreading on polytetrafluoroethylene surfaces is selected as a classical example to study the dynamic behaviors of three-phase contact line. To accommodate the moving contact line paradox, the excess free energy is considered to be dissipated in the form of molecular dissipation. As-formed contact line friction/dissipation coefficient is calculated for water interacting with PTFE surfaces with varying structures and is found to be on the same order of magnitude with dynamic viscosity. From an ab initio perspective, contact line friction is decomposed into contributions from solid-liquid retarding and viscous damping. A mathematical model is established to generalize the overall friction between a droplet and a solid surface, which is able to clarify the static-to-kinetic transition of solid-liquid friction without introducing contact angle hysteresis. Moreover, drag reduction on lotus-leaf-like surface is accounted for as well. For the first time, the concept of contact line friction is used in the rational design of a superhydrophobic condenser surface for continuous dropwise condensation.
We focus on the transport and reconfiguration of liquid molecules confined by a solid wall to shed light on the morphology of the molecular region of a three-phase contact line. A governing equation, which originates from the free energy analysis of a nonuniform monocomponent system, is derived to describe the patterned oscillations of liquid density. By comparing to the Reynolds transport theorem, we find that the oscillatory profiles of interfacial liquids are indeed governed in a combined manner by self-diffusion, surface-induced convection and shifted glass transition. Particularly for interfacial water, the solid confining effects give rise to a bifurcating configuration of hydrogen bonds. Such unique configuration consists of repetitive layer-by-layer water sheets with intra-layer hydrogen bonds and inter-layer defects. Molecular dynamics simulations on the interfacial configuration of water on solid surfaces reveal a quadratic dependence of adhesion on solid-liquid affinity, which bridges the gap between macroscopic interfacial properties and microscopic parameters. / Doctor of Philosophy / The study of wetting phenomena can be traced back to the observation of water rising in a capillary tube by Hauksbee in 1706 and still remains as a hot topic, since it lays the foundation for a wide spectrum of applications, such as fluid mechanics, surface chemistry, micro/nanofluidic devices, and phase change heat transfer enhancement. The conventional hydrodynamic analysis with no slip boundary condition predicts a diverging shear stress at the contact line as well as an unbounded shear force exerted on the solid surface. To accommodate this paradox, different mechanism and models have been proposed to clarify the slip between a moving contact line and a solid surface. Although almost all models yield reasonable agreement with experimental observations or numerical simulations, it is still difficult to pick up a specific model using only macroscopic properties and experiment-accessible quantities, because the energy dissipation mechanism during dynamic wetting is not identified and the contact line deforms over different length scales.
In this dissertation, we ascribe the energy dissipation in dynamic wetting to contact line friction/dissipation under the framework of molecular kinetic theory, as it is assumed that the contact line is constantly oscillating around its equilibrium position. By decomposing contact line friction into two contributions: solid-liquid retarding and viscous damping, we are able to derive a universal model for the contact line friction. This model predicts a decaying solid-liquid friction on superhydrophobic surfaces, corresponding to the lotus effect. In the meantime, this model is able to clarify the recently-discovered static-to-kinetic transition of frictional force between a sessile drop and a solid surface. Later, we used the concept of contact line friction in the droplet growth process in dropwise condensation so as to promote the rational design of superhydrophobic condenser surfaces for sustainable dropwise condensation.
As the morphology of a contact line is dependent on the length scale of interest, we focus on the molecular region of contact line. We study the transport and structural change of liquid molecules that are several molecular layers away from the solid surface. It is found that liquid molecules in this region experience patterned density oscillations, which cannot be simply attributed to the random deviations from continuum limit. By combining free energy analysis and Reynolds transport theorem, it is demonstrated that the omnipresent density oscillations arise from the collective effects of self-diffusion, surface-induced convection and shifted glass transition. For liquid water, we propose a bifurcating hydrogen bonding network in contrast to its tetrahedron configuration in bulk water.
|
Page generated in 0.0904 seconds