Spelling suggestions: "subject:"frobenius splitting"" "subject:"fröbenius splitting""
1 |
Hessenberg Patch Ideals of Codimension 1Atar, Busra January 2023 (has links)
A Hessenberg variety is a subvariety of the flag variety parametrized by two maps: a Hessenberg function on $[n]$ and a linear map on $\C^n$. We study regular nilpotent Hessenberg varieties in Lie type A by focusing on the Hessenberg function $h=(n-1,n,\ldots,n)$. We first state a formula for the $f^w_{n,1}$ which generates the local defining ideal $J_{w,h}$ for any $w\in\Ss_n$. Second, we prove that there exists a convenient monomial order so that $\lead(J_{w,h})$ is squarefree. As a consequence, we conclude that each codimension-1 regular nilpotent Hessenberg variety is locally Frobenius split (in positive characteristic). / Thesis / Master of Science (MSc)
|
Page generated in 0.0798 seconds