• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Bubble Coarsening in Froth Phase from First Principles

Park, Seungwoo 07 May 2015 (has links)
Between two neighboring air bubbles in a froth (or foam), a thin liquid film (TLF) is formed. As the bubbles rise upwards, the TLFs thin initially due to the capillary pressure created by curvature changes. As the film thicknesses (H) reach approximately 200 nm, the disjoining pressure created by surface forces in the films also begins to control the film drainage rate and affect the waves motions at the air/water interfaces. If the disjoining pressure is negative, both the film drainage and the capillary wave motion accelerate. When the TLF thins to a critical film thickness (Hcr), the amplitude of the wave motion grows suddenly and the two air/water interfaces touch each other, causing the TLF to rupture and bubbles to coalesce. In the present work, a new model that can predict Hcr has been developed by considering the film drainage due to both viscous film thinning and capillary wave motion. Based on the Hcr model, bubble-coarsening in a dynamic foam has been predicted by deriving the geometric relation between the thickness of the lamella film, which controls bubble-coalescence rate, and the Plateau border area, which controls liquid drainage rate. Furthermore, a model for predicting bubble-coarsening in froth (3-phase foam) has been developed by developing a film drainage model quantifying the effect of particles on pc. The parameter pc is affected by the number of particles and the local capillary pressure around particles, which in turn vary with the hydrophobicity and size of the particles in the film. Assuming that films rupture at free films, the pc corrected for the particles in lamella films has been used to determine the critical rupture time (tcr), at which the film thickness reaches Hcr, using the Reynolds equation. Assuming that the number of bubbles decrease exponentially with froth height, and knowing that bubbles coalesce when film drains to a thickness Hcr, a bubble coarsening model has been developed. The model predictions are in agreement with the experimental data obtained using particle of varying hydrophobicity and size. / Ph. D.

Page generated in 0.0553 seconds