• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrolytic methods for the quantification of fructose-equivalents in herbaceous biomass

Nguyen, Stefanie K. 06 June 2008 (has links)
A low, but significant, fraction of the carbohydrate portion of herbaceous biomass may be composed of fructose/fructosyl-containing components (“fructose equivalents”); such carbohydrates include sucrose, fructo-oligosaccharides, and fructans. Standard methods used for the quantification of structural-carbohydrate-derived neutral monosaccharide-equivalents in biomass are not particularly well suited for the quantification of fructose equivalents due to the inherent instability of fructose in conditions commonly used for hemicellulose/cellulose hydrolysis (> 80% degradation of fructose standards treated at 4% sulfuric acid, 121oC, 1 hr). Alternative time, temperature and acid concentration combinations for fructan hydrolysis were considered using model fructans (inulin, β-2,1 and levan, β-2,6) and a grass seed straw (Tall Fescue, Festuca arundinacea) as representative feedstocks. The instability of fructose, relative to glucose and xylose, at higher acid/temperature combinations is demonstrated, all rates of fructose degradation being acid and temperature dependent. Fructans are shown to be completely hydrolyzed at acid concentrations well below that used for the structural carbohydrates, as low as 0.2%, at 121oC for 1 hr. Lower temperatures are also shown to be effective, with corresponding adjustments in acid concentration and time. Thus, fructans can be effectively hydrolyzed under conditions where fructose degradation is maintained below 10%. Hydrolysis of the β-2,1 fructans at temperatures ≥ 50oC, at all conditions consistent with complete hydrolysis, appear to generate difructose dianhydrides. These same compounds were not detected upon hydrolysis of levan, sucrose, or straw components. It is suggested that fructan hydrolysis conditions be chosen such that hydrolysis goes to completion, fructose degradation is minimized, and difructose dianhydride production is accounted for. / Graduation date: 2009

Page generated in 0.0839 seconds