• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidation Kinetics of Pure and Blended Methyl Octanoate/n-Nonane/Methylcyclohexane: Measurements and Modeling of OH*/CH* Chemiluminescence, Ignition Delay Times and Laminar Flame Speeds

Rotavera, Brandon Michael 2012 May 1900 (has links)
The focus of the present work is on the empirical characterization and modeling of ignition trends of ternary blends of three distinct hydrocarbon classes, namely a methyl ester (C9H18O2), a linear alkane (n-C9H20), and a cycloalkane (MCH). Numerous surrogate biofuel formulations have been proposed in the literature, yet specific blending of these species has not been studied. Moreover, the effects of blending biofuel compounds with conventional hydrocarbons are not widely studied and a further point is the lack of studies paying specific attention to the effects of fuel variation within a given blended biofuel. To this end, a statistical Design of Experiments L9 array, comprised of 4 parameters (%MO, %MCH, pressure, and equivalence ratio) with 3 levels of variation, constructed in order to systematically study the effects of relative fuel concentrations within the ternary blend enabled variations in fuel concentration for methyl octanoate and MCH of 10% - 30% and 20% - 40%, respectively. Variation in pressure of 1 atm, 5 atm, and 10 atm and in equivalence ratio of 0.5, 1.0, and 2.0 were used, respectively. The fuel-volume percentage of n-nonane varied from 30% - 70%. In total, 10 ternary blends were studied. Ignition delay times for the ternary blends and for the three constituents were obtained by monitoring excited-state OH or CH transitions, A2Epsilon+ -> X2Pi or A2Delta -> X2Pi, respectively, behind reflected shock waves using a heated shock tube facility. Dilute conditions of 99% Ar (vol.) were maintained in all shock tube experiments with the exception of a separate series of n-nonane and MCH experiments under stoichiometric conditions which used 4% oxygen (corresponding to ~ 95% Ar dilution). Temperatures behind reflected shock waves were varied over the range 1243 < T (K) < 1672. From over 450 shock tube experiments, empirical ignition delay time correlations were constructed for all three pure fuels and a master correlation equation for the blended fuels. Ignition experiments conducted on the pure fuels at 1.5 atm indicated the following ignition delay time order, from shortest to longest: methyl octanoate < n-nonane < MCH. With increased pressure to 10 atm (nominal) the order remained, in general, consistent. Under fuel-lean conditions, ignition trends between methyl octanoate and n-nonane exhibited overlap at temperatures below 1350 K, below which the trends diverged with methyl octanoate having shorter ignition delay times. Similar behavior was observed under fuel-rich conditions, yet with the overlap occurring above 1450 K. Stoichiometric ignition trends did not display overlapping behavior under either 1.5 atm or 10 atm pressure. Laminar flame speed measurements were performed at 1 atm and an initial temperature of 443 K on the pure fuel constituents. Additional flame speed measurements of MCH were conducted at 403 K to compare with literature values and were shown to agree strongly with experiments conducted in a constant-volume apparatus. The experiments conducted herein, for the first time, measure laminar flame speeds methyl octanoate. A detailed chemical kinetics mechanism was compiled from three independent, well-validated models for the constituent fuels, where the sub-mechanisms for methyl octanoate and MCH were extracted for integration into a base n-nonane model. The compiled mechanism in the present study (4785 reactions and 1082 species) enables modeling of oxidation processes of the ternary fuel blends of interest. Calculations were performed using the compiled model relative to the base models to assess the impact of utilizing different base chemistry sets. In general, results were reproduced well relative to base models for both n-nonane and MCH, however results for methyl octanoate from both the compiled model and the base model are in disagreement with the results measured herein. Ignition delay times of the fuel blends are well-predicted for several conditions, specifically for blends at lean/high-pressure and stoichiometric/high-pressure conditions, however are not accurately modeled at fuel-rich, high-pressure conditions.
2

Solid Fuel Blend Pyrolysis-Combustion Behavior and Fluidized Bed Hydrodynamics

Agarwal, Gaurav 16 October 2013 (has links)
As a carbon neutral and renewable source of energy, biomass carries a high potential to help sustain the future energy demand. The co-firing of coal and biomass mixtures is an alternative fuel route for the existing coal based reactors. The main challenges associated with co-firing involves proper understanding of the co-firing behavior of blended coal-biomass fuels, and proper understanding of advanced gasification systems used for converting such blended fuels to energy. The pyrolysis and combustion behavior of coal-biomass mixtures was quantified by devising laboratory experiments and mathematical models. The pyrolysis-combustion behavior of blended fuels was quantified on the basis of their physicochemical, kinetic, energetic and evolved gas behavior during pyrolysis/combustion. The energetic behavior of fuels was quantified by applying mathematical models onto the experimental data to obtain heat of pyrolysis and heat of combustion. Fuel performance models were developed to compare the pyrolysis and combustion performance of non-blended and blended fuels. The effect of blended fuel briquetting was also analyzed to find solutions related to coal and biomass co-firing by developing a bench scale fuel combustion setup. The collected data was analyzed to identify the effects of fuel blending and briquetting on fuel combustion performance, ignitability, flammability and evolved pollutant gases. A further effort was made in this research to develop the understanding of fluidized bed hydrodynamics. A lab scale cold-flow fluidized bed setup was developed and novel non-intrusive techniques were applied to quantify the hydrodynamics behavior. Particle Image Velocimetry and Digital Image Analysis algorithms were used to investigate the evolution of multiple inlet gas jets located at its distributor base. Results were used to develop a comprehensive grid-zone phenomenological model and determine hydrodynamics parameters such as jet particle entrainment velocities and void fraction among others. The results were further used to study the effect of fluidization velocity, particle diameter, particle density, distributor orifice diameter and orifice pitch on the solid circulation in fluidized beds. / Ph. D.
3

Modellierung und Simulation der Vergasung von Brennstoffmischungen

Gärtner, Lars-Erik 28 October 2015 (has links) (PDF)
Mit Hilfe eines variabel einsetzbaren Reaktornetzwerkmodells (RNM) wird in der vorliegenden Dissertation der Prozess der Vergasung von Brennstoffmischungen in der Fließbildsimulation beschrieben. Neben der Untersuchung von gestuften Prozessketten zur Veredelung von kohlenstoffhaltigen Energieträgern ist damit auch die differenzierte Analyse von Effekten während der Vergasung von binären und ternären Brennstoffmischungen möglich. Die Erstellung sowie Validierung des RNM wird anhand des PEFR-Vergasers, des SFGT-Vergasers und des Hybridwandvergaser vorgenommen. Die anschließende Analyse der Vergasung von Brennstoffmischungen zeigt, dass in ihren Eigenschaften sehr heterogene Brenn¬stoffmischungen Synergieeffekte bei der Vergasung hervorrufen. Diese sind in der Literatur schon oft beschrieben worden, eine systematische Analyse wird jedoch erst in der vorliegenden Dissertation durchgeführt. / Within this document the modeling and simulation of fuel blend gasification is investigated based on a variably applicable Reduced Order Model (ROM) developed for the flowsheet simulation of entrained-flow gasification reactors and processes. On one hand this enables the investigation of cascaded solid fuel conversion technologies and on the other hand effects during gasification of binary and ternary fuel blends are describable. The development as well as the validation of the ROM has been carried out for the SFGT gasifier, the PEFR gasifier and the hybrid-wall gasifier. The subsequent analysis of binary and ternary fuel blend gasification shows that fuel blends with very heterogeneous component properties induce synergy effects which have been reported in various peer review publications.
4

Modellierung und Simulation der Vergasung von Brennstoffmischungen

Gärtner, Lars-Erik 02 October 2015 (has links)
Mit Hilfe eines variabel einsetzbaren Reaktornetzwerkmodells (RNM) wird in der vorliegenden Dissertation der Prozess der Vergasung von Brennstoffmischungen in der Fließbildsimulation beschrieben. Neben der Untersuchung von gestuften Prozessketten zur Veredelung von kohlenstoffhaltigen Energieträgern ist damit auch die differenzierte Analyse von Effekten während der Vergasung von binären und ternären Brennstoffmischungen möglich. Die Erstellung sowie Validierung des RNM wird anhand des PEFR-Vergasers, des SFGT-Vergasers und des Hybridwandvergaser vorgenommen. Die anschließende Analyse der Vergasung von Brennstoffmischungen zeigt, dass in ihren Eigenschaften sehr heterogene Brenn¬stoffmischungen Synergieeffekte bei der Vergasung hervorrufen. Diese sind in der Literatur schon oft beschrieben worden, eine systematische Analyse wird jedoch erst in der vorliegenden Dissertation durchgeführt.:Nomenklatur XIV 1 Einleitung 1 2 Grundlagen 3 2.1 VERGASUNG 3 2.1.1 Vergasungsreaktionen 3 2.1.2 Vergasungskennzahlen 4 2.1.3 Modellierung der Vergasung 6 2.2 CO-VERGASUNG 8 2.2.1 Brennstoffe 8 2.2.2 Großtechnische Anwendung 8 2.2.3 Experimentelle Arbeiten 10 2.2.4 Modellierung und Simulation 13 2.2.5 Synergieeffekte 13 2.3 STOFFGEFÜHRTE PROZESSKETTE 15 2.4 BRENNSTOFFAUSWAHL UND BRENNSTOFFEIGENSCHAFTEN 16 2.5 ABLEITUNG DER AUFGABENSTELLUNG UND METHODIK 19 3 Entwicklung des Reaktornetzwerkmodells 22 3.1 MODELLIERUNGSUMGEBUNG 23 3.2 THERMODYNAMISCHE ZUSTANDSGLEICHUNG 23 3.3 STOFFDATENBANK 24 3.4 STRÖMUNGSBEDINGUNGEN IM FLUGSTROMREAKTOR 25 3.4.1 Zonenmodell 25 3.4.2 Verweilzeitverhalten 29 3.5 PARTIKELMODELL 31 3.6 MODELLIERUNG DER REAKTORZONEN 35 3.6.1 Nahbrennerzone (Zone I) 35 3.6.2 Jetzone (Zone II) 36 3.6.3 Rezirkulationszone (Zone III) 41 3.6.4 Auslaufzone (Zone IV) 41 3.6.5 Wasserquench (Zone V) 41 3.7 REGELMECHANISMEN 42 3.7.1 Regelung der Aschefließtemperatur 42 3.7.2 Regelung des Kohlenstoffumsatzgrades 46 3.7.3 Regelung der maximalen Reaktoraustrittstemperatur 47 3.7.4 Kombinierte Regelung 47 3.8 LÖSUNGSALGORITHMEN UND KONVERGENZVERHALTEN 48 4 Validierung des Reaktornetzwerkmodells 51 4.1 REAKTORNETZWERKMODELL PEFR-VERGASER 51 4.1.1 Aufbau des PEFR-RNM 51 4.1.2 Validierung des PEFR-RNM 54 4.2 REAKTORNETZWERKMODELL SFGT-VERGASER 61 4.2.1 Aufbau des SFGT-RNM 61 4.2.2 Validierung des SFGT-RNM 62 4.3 REAKTORNETZWERKMODELL HYBRIDWANDVERGASER 74 4.3.1 Beschreibung der Technologie Hybridwandvergaser 74 4.3.2 Aufbau des Hybridwandvergaser-RNM 75 4.3.3 Validierung des Hybridwandvergaser-RNM 78 5 RNM-Analyse der Vergasung von Brennstoffmischungen 85 5.1 VORÜBERLEGUNGEN 85 5.1.1 Festlegung der Randbedingungen 85 5.1.2 Thermische Vergaserleistung 86 5.1.3 Simulationsdauer und Automatisierung 87 5.2 AUSWERTUNG DER RNM-ANALYSE VON BRENNSTOFFMISCHUNGEN 89 5.2.1 RNM-Analyse BSM-BRP (binär) im SFGT-Vergaser 89 5.2.2 RNM-Analyse BSM-BRP (ternär) im SFGT-Vergaser 95 5.2.3 RNM-Analyse BSM-ibi (binär) im SFGT-Vergaser 100 5.2.4 RNM-Analyse BSM-ibi (ternär) im SFGT-Vergaser 102 5.3 DISKUSSION DER ERGEBNISSE AUS RNM-ANALYSE 106 5.4 BSM-DIAGRAMME FÜR VERGASERBETRIEB 109 5.4.1 BSM-Diagramme für SFGT-Vergaser 109 5.4.2 BSM-Diagramme für Hybridwandvergaser 112 6 Zusammenfassung und Ausblick 117 Literatur 121 Abbildungsverzeichnis 133 Tabellenverzeichnis 141 Anhang 145 / Within this document the modeling and simulation of fuel blend gasification is investigated based on a variably applicable Reduced Order Model (ROM) developed for the flowsheet simulation of entrained-flow gasification reactors and processes. On one hand this enables the investigation of cascaded solid fuel conversion technologies and on the other hand effects during gasification of binary and ternary fuel blends are describable. The development as well as the validation of the ROM has been carried out for the SFGT gasifier, the PEFR gasifier and the hybrid-wall gasifier. The subsequent analysis of binary and ternary fuel blend gasification shows that fuel blends with very heterogeneous component properties induce synergy effects which have been reported in various peer review publications.:Nomenklatur XIV 1 Einleitung 1 2 Grundlagen 3 2.1 VERGASUNG 3 2.1.1 Vergasungsreaktionen 3 2.1.2 Vergasungskennzahlen 4 2.1.3 Modellierung der Vergasung 6 2.2 CO-VERGASUNG 8 2.2.1 Brennstoffe 8 2.2.2 Großtechnische Anwendung 8 2.2.3 Experimentelle Arbeiten 10 2.2.4 Modellierung und Simulation 13 2.2.5 Synergieeffekte 13 2.3 STOFFGEFÜHRTE PROZESSKETTE 15 2.4 BRENNSTOFFAUSWAHL UND BRENNSTOFFEIGENSCHAFTEN 16 2.5 ABLEITUNG DER AUFGABENSTELLUNG UND METHODIK 19 3 Entwicklung des Reaktornetzwerkmodells 22 3.1 MODELLIERUNGSUMGEBUNG 23 3.2 THERMODYNAMISCHE ZUSTANDSGLEICHUNG 23 3.3 STOFFDATENBANK 24 3.4 STRÖMUNGSBEDINGUNGEN IM FLUGSTROMREAKTOR 25 3.4.1 Zonenmodell 25 3.4.2 Verweilzeitverhalten 29 3.5 PARTIKELMODELL 31 3.6 MODELLIERUNG DER REAKTORZONEN 35 3.6.1 Nahbrennerzone (Zone I) 35 3.6.2 Jetzone (Zone II) 36 3.6.3 Rezirkulationszone (Zone III) 41 3.6.4 Auslaufzone (Zone IV) 41 3.6.5 Wasserquench (Zone V) 41 3.7 REGELMECHANISMEN 42 3.7.1 Regelung der Aschefließtemperatur 42 3.7.2 Regelung des Kohlenstoffumsatzgrades 46 3.7.3 Regelung der maximalen Reaktoraustrittstemperatur 47 3.7.4 Kombinierte Regelung 47 3.8 LÖSUNGSALGORITHMEN UND KONVERGENZVERHALTEN 48 4 Validierung des Reaktornetzwerkmodells 51 4.1 REAKTORNETZWERKMODELL PEFR-VERGASER 51 4.1.1 Aufbau des PEFR-RNM 51 4.1.2 Validierung des PEFR-RNM 54 4.2 REAKTORNETZWERKMODELL SFGT-VERGASER 61 4.2.1 Aufbau des SFGT-RNM 61 4.2.2 Validierung des SFGT-RNM 62 4.3 REAKTORNETZWERKMODELL HYBRIDWANDVERGASER 74 4.3.1 Beschreibung der Technologie Hybridwandvergaser 74 4.3.2 Aufbau des Hybridwandvergaser-RNM 75 4.3.3 Validierung des Hybridwandvergaser-RNM 78 5 RNM-Analyse der Vergasung von Brennstoffmischungen 85 5.1 VORÜBERLEGUNGEN 85 5.1.1 Festlegung der Randbedingungen 85 5.1.2 Thermische Vergaserleistung 86 5.1.3 Simulationsdauer und Automatisierung 87 5.2 AUSWERTUNG DER RNM-ANALYSE VON BRENNSTOFFMISCHUNGEN 89 5.2.1 RNM-Analyse BSM-BRP (binär) im SFGT-Vergaser 89 5.2.2 RNM-Analyse BSM-BRP (ternär) im SFGT-Vergaser 95 5.2.3 RNM-Analyse BSM-ibi (binär) im SFGT-Vergaser 100 5.2.4 RNM-Analyse BSM-ibi (ternär) im SFGT-Vergaser 102 5.3 DISKUSSION DER ERGEBNISSE AUS RNM-ANALYSE 106 5.4 BSM-DIAGRAMME FÜR VERGASERBETRIEB 109 5.4.1 BSM-Diagramme für SFGT-Vergaser 109 5.4.2 BSM-Diagramme für Hybridwandvergaser 112 6 Zusammenfassung und Ausblick 117 Literatur 121 Abbildungsverzeichnis 133 Tabellenverzeichnis 141 Anhang 145

Page generated in 0.0517 seconds