• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The calculation of fuel bowing reactivity coefficients in a subcritical advanced burner reactor

Bopp, Andrew T. 13 January 2014 (has links)
The United States' fleet of Light Water Reactors (LWRs) produces a large amount of spent fuel each year; all of which is presently intended to be stored in a fuel repository for disposal. As these LWRs continue to operate and more are built to match the increasing demand for electricity, the required capacity for these repositories grows. Georgia Tech's Subcritical Advanced Burner Reactor (SABR) has been designed to reduce the capacity requirements for these repositories and thereby help close the back end of the nuclear fuel cycle by burning the long-lived transuranics in spent nuclear fuel. SABR's design is based heavily off of the Integral Fast Reactor (IFR). It is important to understand whether the SABR design retains the passive safety characteristics of the IFR. A full safety analysis of SABR's transient response to various possible accident scenarios needs to be performed to determine this. However, before this safety analysis can be performed, it is imperative to model all components of the reactivity feedback mechanism in SABR. The purpose of this work is to develop a calculational model for the fuel bowing reactivity coefficients that can be used in SABR's future safety analysis. This thesis discusses background on fuel bowing and other reactivity coefficients, the history of the IFR, the design of SABR, describes the method that was developed for calculating fuel bowing reactivity coefficients and its validation, and presents an example of a fuel bowing reactivity calculation for SABR.

Page generated in 0.0634 seconds