• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensitivity analysis of fuel centerline temperatures in SuperCritical water-cooled reactors (SCWRs)

Abdalla, Ayman 01 December 2012 (has links)
SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today’s conventional NPPs, which have thermal efficiencies between 30 ‒ 35%, SCW NPPs will have thermal efficiencies within a range of 45 ‒ 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a ii result, the Heat Transfer Coefficient (HTC), bulk-fluid, sheath and fuel centerline temperature profiles were generated along the heated length of 5.772 m for a generic fuel channel. The fuel centerline and sheath temperature profiles have been determined at four Axial Heat Flux Profiles (AHFPs) using an average thermal power per channel of 8.5 MWth. The four examined AHFPs are the uniform, cosine, upstream-skewed and downstream-skewed profiles. Additionally, this study focuses on investigating a possibility of using low, enhanced and high thermal-conductivity fuels. The low thermal-conductivity fuels, which have been examined in this study, are uranium dioxide (UO2), Mixed Oxide (MOX) and Thoria (ThO2) fuels. The examined enhanced thermal-conductivity fuels are uranium dioxide – silicon carbide (UO2 - SiC) and uranium dioxide - beryllium oxide (UO2 - BeO). Lastly, uranium carbide (UC), uranium dicarbide (UC2) and uranium nitride (UN) are the selected high thermal-conductivity fuels, which have been proposed for use in SCWRs. A comparison has been made between the low, enhanced and high thermal-conductivity fuels in order to identify the fuel centerline temperature behaviour when different nuclear fuels are used. Also, in the process of conducting the sensitivity analysis, the HTC was calculated using the Mokry et al. correlation, which is the most accurate supercritical water heat-transfer correlation so far. The sheath and the fuel centerline temperature profiles were determined for two cases. In Case 1, the HTC was calculated based on the Mokry et al. correlation, while in Case 2, the HTC values calculated for Case 1 were multiplied by a factor of 2. This factor was used in order to identify the amount of decrease in temperatures if the heat transfer is enhanced with appendages. Results of this analysis indicate that the use of the newly developed 54-element fuel bundle along with the proposed fuels is promising when compared with the iii Variant-20 (43-element) fuel bundle. Overall, the fuel centerline and sheath temperatures were below the industry and design limits when most of the proposed fuels were examined in the 54-element fuel bundle, however, the fuel centerline temperature limit was exceeded while MOX fuel was examined. / UOIT
2

Thermal aspects of high efficiency channel with conventional and alternative fuels in SuperCritical water-cooled reactor (SCWR) applications

Peiman, Wargha 01 March 2011 (has links)
Chosen as one of six Generation‒IV nuclear-reactor concepts, SuperCritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 ‒ 50% owing to reactor‘s high outlet temperatures. A generic pressure-channel (or pressure-tube)SCWR operates at a pressure of 25 MPa with inlet- and outlet-coolant temperatures of 350°C and 625°C. Consequently, the sheath and fuel centerline temperatures are higher in SCWRs than those of the current nuclear reactors. Previous studies have shown that the sheath and fuel centerline temperatures could exceed the design and industry accepted limits of 850°C and 1850°C, respectively. These studies correspond to UO2 enclosed in a 43-element fuel bundle at an average thermal power per channel of 8.5 MWth. Additionally, these high operating conditions in the range of 350 - 625°C lead to high heat losses from the coolant to the moderator, which in turn reduces the overall thermal efficiency of the Nuclear Power Plant (NPP). Therefore, there is a need for alternative fuels or fuel bundles for future use in SCWRs. Hence, it is also necessary to determine the amount of heat losses from a number of fuel-channel designs for SCWRs. The objectives of this study are to investigate the possibility of using alternative fuels and to determine the heat losses from a fuel-channel design at SCWR conditions. The investigated fuels are categorized as low thermal-conductivity (e.g., UO2, MOX, and ThO2), high thermal-conductivity (e.g., UC, UC2, UN), and enhanced thermal-conductivity (e.g., UO2‒SiC, UO2‒C, and UO2‒BeO) fuels. Additionally, the examined fuel channel is the High Efficiency Channel (HEC), which has been designed by the Atomic Energy of Canada Limited (AECL) for the proposed CANDU SCWR. In order to achieve the objectives of this study, a steady-state one-dimensional heat-transfer analysis was conducted. The MATLAB© and NIST REFPROP© software were used for programming and retrieving thermophysical properties of a light-water coolant, respectively. The fuel centerline temperature was calculated for the fuel channels with the maximum thermal power, i.e., +15% above average channel power. Results of this analysis showed that the fuel centerline temperatures of low thermal-conductivity fuels exceed the industry limit; therefore, either a fuel with a higher thermal conductivity should be used or the fuel bundle geometry must be modified. Among the high thermal-conductivity fuels, UC has been shown to be a candidate for future use in SCWRs. However, the chemical compatibility of UC with water at high operating temperatures of SCWRs remains ambiguous. Therefore, further studies are required before selecting UC. In regards to enhanced thermal-conductivity fuels, UO2‒BeO is the most suitable candidate; however, its mechanical and neutronic properties must be thoroughly studied before any decision is made with regards to the selection of a fuel. In regards to the heat losses from the examined fuel channel, the heat loss was between 70 kW and 110 kW per fuel channel based on an average thermal power per channel of 8.5 MWth and a moderator pressure of 0.1 MPa at 80°C. A sensitivity analysis of the fuel channel shows that the heat loss can be reduced by increasing the operating pressure of the moderator, which in turn allows for increasing the operating temperature of the moderator. Higher operating temperatures of the moderator result in smaller temperature differences between the coolant and the moderator, which leads to lower heat losses. Therefore, either the thickness of the insulator or the pressure of the moderator should be increased in order to reduce the heat losses from the fuel channel. / UOIT

Page generated in 0.1115 seconds