• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Design of Passive Networks with Full-Wave Component Models

Valentino, Eric 27 June 2019 (has links)
In this thesis, the design of passive networks with the aid of full-wave simulation software and geometry-based models of lumped elements is investigated. This is done by examining the results of a number of simulation examples, as well as measured data from manufactured designs to compare against simulated equivalents. One such example is a chip antenna evaluation board design, in which the PCB, antenna, matching components and connector are all modeled. When measured, the simulation agreed with the board’s best matched frequency of 5.5 GHz to within 20 MHz. In another, a new antenna layout is generated from an existing evaluation design which, produced a match of about -15 dB at the design frequency with a similar bandwidth to that shown on the antenna datasheet on the first attempt at manufacture. Additionally, a statistical experiment was conducted in order to provide insight into the phenomenon of coupling between lumped components, and to define clearly when it starts to become an important effect to consider. For both chip capacitors and inductors, a behavioral model of how much crosstalk is present in a prospective circuit was developed which takes into account angle and distance between components, as well as case size. Finally, a simple discrete gradient descent was implemented in a commercial full-wave simulation software in order to assist in the refinement of designs containing 3-D geometry-defined component models.
2

Hybrid Numerical Models for Fast Design of Terahertz Plasmonic Devices

Bhardwaj, Shubhendu 07 December 2017 (has links)
No description available.

Page generated in 0.0788 seconds