• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconhecimento de formas utilizando modelos de compressão de dados e espaços de escalas de curvatura

Lordão, Fernando Augusto Ferreira 27 August 2009 (has links)
Made available in DSpace on 2015-05-14T12:36:54Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2499209 bytes, checksum: 80d399f8f00f3e82d2a3b34e52fd6b05 (MD5) Previous issue date: 2009-08-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / As the processing power of computers increases, the quantity and complexity of stored data have growing in the same way, requiring more sophisticated mechanisms to accomplish retrieval with efficacy and efficiency over these information. In image processing, it has become common the retrieval based on its own content, namely Content-Based Image Retrieval (CBIR), which eliminates the need to place additional annotations as textual descriptions and keywords registered by an observer. The purpose of this work is the development of an image retrieval mechanism based on shape recognition. The mechanism consists in (1) compute the Full Curvature Scale Space (FullCSS) image descriptors; and (2) apply over them a lossless compression method objecting to (3) classify these descriptors and retrieve the corresponding images. The FullCSS descriptors register the curvature variations on the image contour indicating the degree and the signal of these variations, which allow identifying where the curvature is concave or convex. The adopted compression method uses the Prediction by Partial Matching (PPM) compression model, which has been successfully used in other works to classify texture images. The results obtained show that this novel approach is able to reach competitive levels of efficacy and efficiency when compared to other works recently developed in this same area. / Com o aumento do poder de processamento dos computadores, cresceu também a quantidade e complexidade dos dados armazenados, exigindo mecanismos cada vez mais sofisticados para se conseguir uma recuperação eficaz e eficiente destas informações. No caso do processamento de imagens, tem se tornado comum a recuperação baseada em seu próprio conteúdo, ou seja, Recuperação de Imagem Baseada em Conteúdo (Content-Based Image Retrieval CBIR), eliminando a necessidade de anotações adicionais como descrições textuais e palavras-chave registradas por um observador. A proposta deste trabalho é o desenvolvimento de um mecanismo de recuperação de imagens através do reconhecimento de sua forma. O mecanismo consiste em (1) calcular os descritores Full Curvature Scale Space (FullCSS) das imagens; e (2) aplicar sobre eles um método de compressão sem perdas com a finalidade de (3) classificar esses descritores e recuperar as imagens correspondentes. Os descritores FullCSS registram as variações na curvatura do contorno da imagem indicando o grau e o sinal dessas variações, permitindo identificar onde a curvatura é côncava ou convexa. O método de compressão adotado utiliza o modelo de compressão Prediction by Partial Matching (PPM), utilizado com sucesso em outros trabalhos para classificar imagens de texturas. Os resultados obtidos indicam que esta abordagem inovadora é capaz de atingir níveis competitivos de eficácia e eficiência quando comparada a outros trabalhos atualmente desenvolvidos nesta mesma área.

Page generated in 0.024 seconds