Spelling suggestions: "subject:"fully integrated"" "subject:"bully integrated""
11 |
Commande de composants grand gap dans un convertisseur de puisance synchrone sans diodes / A gate driver for diode-less wide band gap devices-based synchronous convertersGrézaud, Romain 06 November 2014 (has links)
Les composants de puissance grand gap présentent d'ores et déjà des caractéristiques statiques et dynamiques supérieures à leurs homologues en silicium. Mais ces composants d'un nouvel ordre s'accompagnent de différences susceptibles de modifier le fonctionnement de la cellule de commutation. Les travaux qui furent menés au cours de cette thèse se sont intéressés aux composants grand gap et à leur commande au sein d'un convertisseur de puissance synchrone robuste, haut rendement et haute densité de puissance. En particulier deux points critiques ont été identifiés et étudiés. Le premier est la grande sensibilité des composants grand gap aux composants parasites. Le second est l'absence de diode parasite interne entre le drain et la source de nombreux transistors grand gap. Pour répondre aux exigences de ces nouveaux composants et en tirer le meilleur profit, nous proposons des solutions innovantes, robustes, efficaces et directement intégrables aux circuits de commande. Des circuits de commande entièrement intégrés ont ainsi été conçus spécifiquement pour les composants grand gap. Ceux-ci permettent entre autres le contrôle précis des formes de commutation par l'adaptation de l'impédance de grille, et l'amélioration de l'efficacité énergétique et de la robustesse d'un convertisseur de puissance à base de composants grand sans diodes par une gestion dynamique et locale de temps morts très courts. / Wide band gap devices already demonstrate static and dynamic performances better than silicon transistors. Compared to conventional silicon devices these new wide band gap transistors have some different characteristics that may affect power converter operations. The work presented in this PhD manuscript deals with a specific gate drive circuit for a robust, high power density and high efficiency wide band gap devices-based power converter. Two critical points have been especially studied. The first point is the higher sensitivity of wide band gap transistors to parasitic components. The second point is the lack of parasitic body diode between drain and source of HEMT GaN and JFET SiC. In order to drive these new power devices in the best way we propose innovative, robust and efficient solutions. Fully integrated gate drive circuits have been specifically developed for wide band gap devices. An adaptive output impedance gate driver provides an accurate control of wide band gap device switching waveforms directly on its gate side. Another gate drive circuit improves efficiency and reliability of diode-less wide band gap devices-based power converters thanks to an auto-adaptive and local dead-time management.
|
12 |
Energy-efficient interfaces for vibration energy harvestingDu, Sijun January 2018 (has links)
Ultra low power wireless sensors and sensor systems are of increasing interest in a variety of applications ranging from structural health monitoring to industrial process control. Electrochemical batteries have thus far remained the primary energy sources for such systems despite the finite associated lifetimes imposed due to limitations associated with energy density. However, certain applications (such as implantable biomedical electronic devices and tire pressure sensors) require the operation of sensors and sensor systems over significant periods of time, where battery usage may be impractical and add cost due to the requirement for periodic re-charging and/or replacement. In order to address this challenge and extend the operational lifetime of wireless sensors, there has been an emerging research interest on harvesting ambient vibration energy. Vibration energy harvesting is a technology that generates electrical energy from ambient kinetic energy. Despite numerous research publications in this field over the past decade, low power density and variable ambient conditions remain as the key limitations of vibration energy harvesting. In terms of the piezoelectric transducers, the open-circuit voltage is usually low, which limits its power while extracted by a full-bridge rectifier. In terms of the interface circuits, most reported circuits are limited by the power efficiency, suitability to real-world vibration conditions and system volume due to large off-chip components required. The research reported in this thesis is focused on increasing power output of piezoelectric transducers and power extraction efficiency of interface circuits. There are five main chapters describing two new design topologies of piezoelectric transducers and three novel active interface circuits implemented with CMOS technology. In order to improve the power output of a piezoelectric transducer, a series connection configuration scheme is proposed, which splits the electrode of a harvester into multiple equal regions connected in series to inherently increase the open-circuit voltage generated by the harvester. This topology passively increases the rectified power while using a full-bridge rectifier. While most of piezoelectric transducers are designed with piezoelectric layers fully covered by electrodes, this thesis proposes a new electrode design topology, which maximizes the raw AC output power of a piezoelectric harvester by finding an optimal electrode coverage. In order to extract power from a piezoelectric harvester, three active interface circuits are proposed in this thesis. The first one improves the conventional SSHI (synchronized switch harvesting on inductor) by employing a startup circuitry to enable the system to start operating under much lower vibration excitation levels. The second one dynamically configures the connection of the two regions of a piezoelectric transducer to increase the operational range and output power under a variety of excitation levels. The third one is a novel SSH architecture which employs capacitors instead of inductors to perform synchronous voltage flip. This new architecture is named as SSHC (synchronized switch harvesting on capacitors) to distinguish from SSHI rectifiers and indicate its inductorless architecture.
|
13 |
Analýza a realizace kmitočtového filtru přeladitelného změnou parametru aktivního prvku / Analysis and realization of frequency filter tunable by active component parameterVrba, Adam January 2010 (has links)
This work analyzes tuning capabilities of different fully integrated active filter topologies. Work only deals with continuous time active filters. Topologies described in this work differ in type of active element and in method of frequency tuning. Techniques of tunning are proved on second order low pass filter. Filter topologies are compared from tunning capabilities and from point of total harmonic distortion. The main building block of all filters is integrator.
|
Page generated in 0.0835 seconds