• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing feedback compensators by using the Root-Locus method

Korkmaz, Levent 12 1900 (has links)
Approved for public release; distribution is unlimited / The purpose of this thesis is to find suitable ways to design feedback compensators for high order systems by using Root-Locus methods. As a starting point we will examine a motor amplidyne system and a position control system that were previously designed using Bode methods. Then we generalize the method and extend it to other systems. The final subject of this thesis is to design feedback compensators as filters by using state feedback coefficients to define zeros of the filter, then we extend this idea to build cascade filters. / http://archive.org/details/designingfeedbac00kork / Lieutenant, Junior Grade, Turkish Navy
2

Stochastic Transportation-Inventory Network Design Problem

Shu, Jia, Teo, Chung Piaw, Shen, Zuo-Jun Max 01 1900 (has links)
In this paper, we study the stochastic transportation-inventory network design problem involving one supplier and multiple retailers. Each retailer faces some uncertain demand. Due to this uncertainty, some amount of safety stock must be maintained to achieve suitable service levels. However, risk-pooling benefits may be achieved by allowing some retailers to serve as distribution centers (and therefore inventory storage locations) for other retailers. The problem is to determine which retailers should serve as distribution centers and how to allocate the other retailers to the distribution centers. Shen et al. (2000) and Daskin et al. (2001) formulated this problem as a set-covering integer-programming model. The pricing subproblem that arises from the column generation algorithm gives rise to a new class of submodular function minimization problem. They only provided efficient algorithms for two special cases, and assort to ellipsoid method to solve the general pricing problem, which run in O(n⁷ log(n)) time, where n is the number of retailers. In this paper, we show that by exploiting the special structures of the pricing problem, we can solve it in O(n² log n) time. Our approach implicitly utilizes the fact that the set of all lines in 2-D plane has low VC-dimension. Computational results show that moderate size transportation-inventory network design problem can be solved efficiently via this approach. / Singapore-MIT Alliance (SMA)

Page generated in 0.1481 seconds