• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O número médio de representações de um inteiro positivo como soma dos quadrados de dois inteiros / The mean number of representations of a positive integer as the sum of the squares of two integers

Avela, Adriano Silva 07 1900 (has links)
AVELA, Adriano Silva. O número médio de representações de um inteiro positivo como soma dos quadrados de dois inteiros. 2017. 46 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-16T14:27:56Z No. of bitstreams: 1 2017_dis_asavela.pdf: 787094 bytes, checksum: 1b45101b32e7b3738ea38b152f128087 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Conferi a Dissertação de ADRIANO SILVA AVELA e detectei alguns erros que devem ser corrigidos pelo próprio autor. Os mesmos seguem listados abaixo: 1- CAPA (altere o termo MESTRADO PROFISIONAL EM MATEMÁTICA EM REDE NACIONAL para PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL) 2- FICHA CATALOGRÁFICA (está faltando a ficha catalográfica do trabalho, a mesma poderá ser elaborada sistema CATALOG, no endereço eletrônico: - http://fichacatalografica.ufc.br/ - e deve ser inserida antes da folha de aprovação) 3- FOLHA DE APROVAÇÃO (a folha de aprovação do trabalho está com formatação inadequada a mesma deve ocupar apenas uma página. O modelo encontra-se disponível no GUIA DE NORMALIZAÇÃO DE TRABALHOS ACADÊMICOS DA UFC, disponível no endereço eletrônico: http://www.biblioteca.ufc.br/images/arquivos/documentos_tecnicos/guia_normalizacao_trabalhos_ufc_2013.pdf 4- DEDICATÓRIA (veja o modelo de formatação da dedicatória no GUIA DE NOEMALIZAÇÃO DA UFC) 5- AGRADECIMENTOS (este item do trabalho não deve conter o nome do autor ao final dos agradecimentos, verifique o modelo no GUIA DE NORMALIZAÇÃO) 6- NUMERAÇÃO INADEQUADA DE PÁGINAS (verifique o trabalho e retire as numerações desordenada das primeiras páginas do trabalho. O número das páginas só deve aparecer a partir da INTRODUÇÃO) 7- EPÍGRAFE (a frase que compõe este elemento do trabalho deve conter a identificação do autor ao qual ela pertence. Mas ela é um elemento opcional, assim você poderá retirá-la sem nenhum prejuízo) 8- RESUMO/ABSTRACT (a formatação dos termos RESUMO e ABSTRACT está incorreta, esses dois termos devem estar em CAIXA ALTA, NEGRITO e FONTE n° 12) 9- PALAVRAS-CHAVE/KEYWORD (acrescente um ponto final no lugar das vírgulas que separam as Palavras e as Keywords) 10 – LISTA DE FIGURAS/LISTA DE TABELAS (Veja o modelo adequado para esses dois itens no GUIA DE NORMALIZAÇÃO) 11 - SUMÁRIO (verifique no GUIA DE NORMALIZAÇÃO o modelo adequado para a elaboração do sumário. Ressalto que o item INTRODUÇÃO é um capítulo e deve constar no sumário com a numeração de primeiro capítulo, Já os termos REFERÊNCIAS e APÊNDICE não devem apresentar numeração de capítulo, verifique no GUIA a formatação desses itens) 12 - TITULO DOS CAPÍTULOS (os títulos de capítulos e seções devem seguir a seguinte formatação: 1 TÍTULOS DE CAPÍTULOS (incluindo a Introdução, CAIXA ALTA, FONTE n° 12, NEGRITO, ALINHADO À ESQUERDA) 1.1 Títulos de seções (seção primária, CAIXA BAIXA, NEGRITO, FONTE N° 12, ALINHADO À ESQUERDA) *NO CASO DE DUVIDA CONSULTE O GUIA DE NORMALIZAÇÃO 13 - NUMERAÇÃO DE PÁGINAS (a número das páginas deve começar a aparecer a partir da folha de introdução, no CANTO SUPERIOR DIREITO) 14- CONCLUSÃO (a conclusão é um item obrigatório que deve constar na dissertação, o GUIA DE NORMALIZAÇÃO DA UFC menciona que “A conclusão deve ser decorrência natural do que foi exposto no desenvolvimento. Assim, em qualquer tipo de trabalho, deve resultar de deduções lógicas sempre fundamentadas no que foi apresentado e discutido anteriormente. Visa a recapitular sinteticamente os resultados da pesquisa.” 15 – REFERÊNCIAS/APÊNDICE (verifique no GUIA DE NORMALIZAÃO a formatação adequada para os títulos da REFERÊNCIAS e APÊNCE) on 2017-08-16T16:56:52Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-21T13:41:34Z No. of bitstreams: 1 2017_dis_asavela.pdf: 834141 bytes, checksum: 7d55f68b04bdc455d1c717f7a76571de (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Ainda há alguns erros na Dissertação de ADRIANO SILVA AVELA que devem ser corrigidos. Eu envie uma cópia desse email para ele, pois contem o anexo com a ficha catalográfica, que não tem como ser enviado aqui pelo repositório. 1- FICHA CATALÓGRAFICA (havia alguns erros na ficha catalográfica, por isso enviamos em anexo a nova ficha para ser inserida no trabalho) 2- RESUMO E ABSTRACT (Retire o recuo do parágrafo na primeira linha do resumo e do abstract. A letra inicial das duas palavras chaves e das Keywords deve ser maiúscula) 3- NUMERAÇÃO DAS PÁGINAS ( o modelo da numeração está coreto, apenas comece com o número 9 na página da INTRODUÇÃO) 4- SUMÁRIO (segue abaixo o modelo do sumário com a formatação adequada, apenas deve ser inserida a numeração das páginas e a linha pontilhada) 1 INTRODUÇÃO 2 ARITMÉTICA DO RESTOS 2.1 A relação de congruência 2.2 Congruências lineares 2.3 Resíduos quadráticos 3 NÚMEROS PRIMOS E SOMAS DE QUADRADOS 4 FUNÇÃO˜ s2 E FUNÇÃO˜ s3 4.1 Função s2 4.2 Função s3 5 SOMA DE DOIS QUADRADOS 6 SOMA DE TRES QUADRADOS 7 CONCLUSÃO REFERÊNCIAS APÊNDICE A - TABELAS DE VALORES APÊNDICE B - RESULTADOS COMPLEMENTARES APÊNDICE C - TEOREMA DOS QUATRO QUADRADOS on 2017-08-21T17:16:15Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-22T15:34:15Z No. of bitstreams: 1 2017_dis_asavela.pdf: 833511 bytes, checksum: 0e2b00b8533fc647e6c76928c5de4671 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-08-23T11:09:25Z (GMT) No. of bitstreams: 1 2017_dis_asavela.pdf: 833511 bytes, checksum: 0e2b00b8533fc647e6c76928c5de4671 (MD5) / Made available in DSpace on 2017-08-23T11:09:25Z (GMT). No. of bitstreams: 1 2017_dis_asavela.pdf: 833511 bytes, checksum: 0e2b00b8533fc647e6c76928c5de4671 (MD5) Previous issue date: 2017-07 / This paper aims to address two themes: the representation of positive integers as sum of squares and the average number of representations of a positive integer as the sum of two squares. About the first theme, we will prove several results to understand under what conditions a positive integer has a representation as a sum of two, three or four squares. About the second theme, we will prove that the mean number of representations of a positive integer as the sum of the squares of two integers is . To do so, we will introduce the function s 2 which associates an integer n with the cardinality of the set X n = {( a, b ) ∈ Z 2 ; a 2 + b 2 = n } and we will calculate the limit of its average value. Finally, as an analogy to the result regarding the mean value of s 2 , we will define the function s 3 , that associates a positive integer n with the cardinality of the set Y n = {( a, b, c ) ∈ Z 3 ; a 2 + b 2 + c 2 = n } and we will prove that there is no mean number of representations of a positive integer as the sum of the squares of three integers. / Este trabalho tem como objetivo abordar dois temas: a representação de inteiros positivos como soma de quadrados e o número médio de representações de um inteiro positivo como soma de dois quadrados. Sobre o primeiro tema, provaremos diversos resultados para entender em quais condições um inteiro positivo possui uma representação como soma de dois, três ou quatro quadrados. Sobre o segundo tema, provaremos que um inteiro positivo tem, em média,pi representações como soma dos quadrados de dois inteiros. Para tanto, introduziremos a função s2 (n), que associa um inteiro n com a cardinalidade do conjunto Xn = {(a, b) Z2 ; a2 + b2 = n} e calcularemos o limite do seu valor médio. Por fim, como analogia ao resultado a respeito do valor médio de s2, definiremos uma outra função s3 que associa um inteiro positivo n com a cardinalidade do conjunto Yn = {(a, b, c) Z3 ; a2 + b2 + c2 = n} e provaremos que não existe um número médio de representações de um inteiro positivo como soma dos quadrados de três inteiros.

Page generated in 0.0835 seconds