Spelling suggestions: "subject:"biunctional clustering"" "subject:"biunctional klustering""
1 |
Bayesian Infinite Mixture Models for Gene Clustering and Simultaneous Context Selection Using High-Throughput Gene Expression DataFreudenberg, Johannes M. January 2009 (has links)
No description available.
|
2 |
Functional clustering methods and marital fertility modellingArnqvist, Per January 2017 (has links)
This thesis consists of two parts.The first part considers further development of a model used for marital fertility, the Coale-Trussell's fertility model, which is based on age-specific fertility rates. A new model is suggested using individual fertility data and a waiting time after pregnancies. The model is named the waiting model and can be understood as an alternating renewal process with age-specific intensities. Due to the complicated form of the waiting model and the way data is presented, as given in the United Nation Demographic Year Book 1965, a normal approximation is suggested together with a normal approximation of the mean and variance of the number of births per summarized interval. A further refinement of the model was then introduced to allow for left truncated and censored individual data, summarized as table data. The waiting model suggested gives better understanding of marital fertility and by a simulation study it is shown that the waiting model outperforms the Coale-Trussell model when it comes to estimating the fertility intensity and to predict the mean and variance of the number of births for a population. The second part of the thesis focus on developing functional clustering methods.The methods are motivated by and applied to varved (annually laminated) sediment data from lake Kassj\"on in northern Sweden. The rich but complex information (with respect to climate) in the varves, including the shapes of the seasonal patterns, the varying varve thickness, and the non-linear sediment accumulation rates makes it non-trivial to cluster the varves. Functional representations, smoothing and alignment are functional data tools used to make the seasonal patterns comparable.Functional clustering is used to group the seasonal patterns into different types, which can be associated with different weather conditions. A new non-parametric functional clustering method is suggested, the Bagging Voronoi K-mediod Alignment algorithm, (BVKMA), which simultaneously clusters and aligns spatially dependent curves. BVKMA is used on the varved lake sediment, to infer on climate, defined as frequencies of different weather types, over longer time periods. Furthermore, a functional model-based clustering method is proposed that clusters subjects for which both functional data and covariates are observed, allowing different covariance structures in the different clusters. The model extends a model-based functional clustering method proposed by James and Suger (2003). An EM algorithm is derived to estimate the parameters of the model.
|
3 |
Advanced Nonparametric Bayesian Functional ModelingGao, Wenyu 04 September 2020 (has links)
Functional analyses have gained more interest as we have easier access to massive data sets. However, such data sets often contain large heterogeneities, noise, and dimensionalities. When generalizing the analyses from vectors to functions, classical methods might not work directly. This dissertation considers noisy information reduction in functional analyses from two perspectives: functional variable selection to reduce the dimensionality and functional clustering to group similar observations and thus reduce the sample size. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model, or developed from a more generic one by changing the prior distributions. Hence, this dissertation focuses on the development of Bayesian approaches for functional analyses due to their flexibilities.
A nonparametric Bayesian approach, such as the Dirichlet process mixture (DPM) model, has a nonparametric distribution as the prior. This approach provides flexibility and reduces assumptions, especially for functional clustering, because the DPM model has an automatic clustering property, so the number of clusters does not need to be specified in advance. Furthermore, a weighted Dirichlet process mixture (WDPM) model allows for more heterogeneities from the data by assuming more than one unknown prior distribution. It also gathers more information from the data by introducing a weight function that assigns different candidate priors, such that the less similar observations are more separated. Thus, the WDPM model will improve the clustering and model estimation results.
In this dissertation, we used an advanced nonparametric Bayesian approach to study functional variable selection and functional clustering methods. We proposed 1) a stochastic search functional selection method with application to 1-M matched case-crossover studies for aseptic meningitis, to examine the time-varying unknown relationship and find out important covariates affecting disease contractions; 2) a functional clustering method via the WDPM model, with application to three pathways related to genetic diabetes data, to identify essential genes distinguishing between normal and disease groups; and 3) a combined functional clustering, with the WDPM model, and variable selection approach with application to high-frequency spectral data, to select wavelengths associated with breast cancer racial disparities. / Doctor of Philosophy / As we have easier access to massive data sets, functional analyses have gained more interest to analyze data providing information about curves, surfaces, or others varying over a continuum. However, such data sets often contain large heterogeneities and noise. When generalizing the analyses from vectors to functions, classical methods might not work directly. This dissertation considers noisy information reduction in functional analyses from two perspectives: functional variable selection to reduce the dimensionality and functional clustering to group similar observations and thus reduce the sample size. The complicated data structures and relations can be easily modeled by a Bayesian hierarchical model due to its flexibility. Hence, this dissertation focuses on the development of nonparametric Bayesian approaches for functional analyses. Our proposed methods can be applied in various applications: the epidemiological studies on aseptic meningitis with clustered binary data, the genetic diabetes data, and breast cancer racial disparities.
|
4 |
Analyse statistique de données fonctionnelles à structures complexesAdjogou, Adjobo Folly Dzigbodi 05 1900 (has links)
No description available.
|
Page generated in 0.0975 seconds